Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+5\times \frac{1}{1000}x-10^{-6}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\frac{1}{200}x-10^{-6}=0
Multiply 5 and \frac{1}{1000} to get \frac{1}{200}.
x^{2}+\frac{1}{200}x-\frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
x=\frac{-\frac{1}{200}±\sqrt{\left(\frac{1}{200}\right)^{2}-4\left(-\frac{1}{1000000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{200} for b, and -\frac{1}{1000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{200}±\sqrt{\frac{1}{40000}-4\left(-\frac{1}{1000000}\right)}}{2}
Square \frac{1}{200} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{200}±\sqrt{\frac{1}{40000}+\frac{1}{250000}}}{2}
Multiply -4 times -\frac{1}{1000000}.
x=\frac{-\frac{1}{200}±\sqrt{\frac{29}{1000000}}}{2}
Add \frac{1}{40000} to \frac{1}{250000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{200}±\frac{\sqrt{29}}{1000}}{2}
Take the square root of \frac{29}{1000000}.
x=\frac{\frac{\sqrt{29}}{1000}-\frac{1}{200}}{2}
Now solve the equation x=\frac{-\frac{1}{200}±\frac{\sqrt{29}}{1000}}{2} when ± is plus. Add -\frac{1}{200} to \frac{\sqrt{29}}{1000}.
x=\frac{\sqrt{29}}{2000}-\frac{1}{400}
Divide -\frac{1}{200}+\frac{\sqrt{29}}{1000} by 2.
x=\frac{-\frac{\sqrt{29}}{1000}-\frac{1}{200}}{2}
Now solve the equation x=\frac{-\frac{1}{200}±\frac{\sqrt{29}}{1000}}{2} when ± is minus. Subtract \frac{\sqrt{29}}{1000} from -\frac{1}{200}.
x=-\frac{\sqrt{29}}{2000}-\frac{1}{400}
Divide -\frac{1}{200}-\frac{\sqrt{29}}{1000} by 2.
x=\frac{\sqrt{29}}{2000}-\frac{1}{400} x=-\frac{\sqrt{29}}{2000}-\frac{1}{400}
The equation is now solved.
x^{2}+5\times \frac{1}{1000}x-10^{-6}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\frac{1}{200}x-10^{-6}=0
Multiply 5 and \frac{1}{1000} to get \frac{1}{200}.
x^{2}+\frac{1}{200}x-\frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
x^{2}+\frac{1}{200}x=\frac{1}{1000000}
Add \frac{1}{1000000} to both sides. Anything plus zero gives itself.
x^{2}+\frac{1}{200}x+\left(\frac{1}{400}\right)^{2}=\frac{1}{1000000}+\left(\frac{1}{400}\right)^{2}
Divide \frac{1}{200}, the coefficient of the x term, by 2 to get \frac{1}{400}. Then add the square of \frac{1}{400} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{200}x+\frac{1}{160000}=\frac{1}{1000000}+\frac{1}{160000}
Square \frac{1}{400} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{200}x+\frac{1}{160000}=\frac{29}{4000000}
Add \frac{1}{1000000} to \frac{1}{160000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{400}\right)^{2}=\frac{29}{4000000}
Factor x^{2}+\frac{1}{200}x+\frac{1}{160000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{400}\right)^{2}}=\sqrt{\frac{29}{4000000}}
Take the square root of both sides of the equation.
x+\frac{1}{400}=\frac{\sqrt{29}}{2000} x+\frac{1}{400}=-\frac{\sqrt{29}}{2000}
Simplify.
x=\frac{\sqrt{29}}{2000}-\frac{1}{400} x=-\frac{\sqrt{29}}{2000}-\frac{1}{400}
Subtract \frac{1}{400} from both sides of the equation.