Solve for x
x=\frac{\sqrt{30}}{6}\approx 0.912870929
x=-\frac{\sqrt{30}}{6}\approx -0.912870929
Graph
Share
Copied to clipboard
\left(x-2\right)x^{2}+5x^{2}\left(x-2\right)=5\left(x-2\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
x^{3}-2x^{2}+5x^{2}\left(x-2\right)=5\left(x-2\right)
Use the distributive property to multiply x-2 by x^{2}.
x^{3}-2x^{2}+5x^{3}-10x^{2}=5\left(x-2\right)
Use the distributive property to multiply 5x^{2} by x-2.
6x^{3}-2x^{2}-10x^{2}=5\left(x-2\right)
Combine x^{3} and 5x^{3} to get 6x^{3}.
6x^{3}-12x^{2}=5\left(x-2\right)
Combine -2x^{2} and -10x^{2} to get -12x^{2}.
6x^{3}-12x^{2}=5x-10
Use the distributive property to multiply 5 by x-2.
6x^{3}-12x^{2}-5x=-10
Subtract 5x from both sides.
6x^{3}-12x^{2}-5x+10=0
Add 10 to both sides.
±\frac{5}{3},±\frac{10}{3},±5,±10,±\frac{5}{6},±\frac{5}{2},±\frac{1}{3},±\frac{2}{3},±1,±2,±\frac{1}{6},±\frac{1}{2}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 10 and q divides the leading coefficient 6. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6x^{2}-5=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 6x^{3}-12x^{2}-5x+10 by x-2 to get 6x^{2}-5. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-5\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, 0 for b, and -5 for c in the quadratic formula.
x=\frac{0±2\sqrt{30}}{12}
Do the calculations.
x=-\frac{\sqrt{30}}{6} x=\frac{\sqrt{30}}{6}
Solve the equation 6x^{2}-5=0 when ± is plus and when ± is minus.
x\in \emptyset
Remove the values that the variable cannot be equal to.
x=2 x=-\frac{\sqrt{30}}{6} x=\frac{\sqrt{30}}{6}
List all found solutions.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Variable x cannot be equal to 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}