Solve for x (complex solution)
x=\sqrt{48603}-2\approx 218.460880884
x=-\left(\sqrt{48603}+2\right)\approx -222.460880884
Solve for x
x=\sqrt{48603}-2\approx 218.460880884
x=-\sqrt{48603}-2\approx -222.460880884
Graph
Share
Copied to clipboard
x^{2}+4x-48599=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-48599\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -48599 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-48599\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+194396}}{2}
Multiply -4 times -48599.
x=\frac{-4±\sqrt{194412}}{2}
Add 16 to 194396.
x=\frac{-4±2\sqrt{48603}}{2}
Take the square root of 194412.
x=\frac{2\sqrt{48603}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{48603}}{2} when ± is plus. Add -4 to 2\sqrt{48603}.
x=\sqrt{48603}-2
Divide -4+2\sqrt{48603} by 2.
x=\frac{-2\sqrt{48603}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{48603}}{2} when ± is minus. Subtract 2\sqrt{48603} from -4.
x=-\sqrt{48603}-2
Divide -4-2\sqrt{48603} by 2.
x=\sqrt{48603}-2 x=-\sqrt{48603}-2
The equation is now solved.
x^{2}+4x-48599=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4x-48599-\left(-48599\right)=-\left(-48599\right)
Add 48599 to both sides of the equation.
x^{2}+4x=-\left(-48599\right)
Subtracting -48599 from itself leaves 0.
x^{2}+4x=48599
Subtract -48599 from 0.
x^{2}+4x+2^{2}=48599+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=48599+4
Square 2.
x^{2}+4x+4=48603
Add 48599 to 4.
\left(x+2\right)^{2}=48603
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{48603}
Take the square root of both sides of the equation.
x+2=\sqrt{48603} x+2=-\sqrt{48603}
Simplify.
x=\sqrt{48603}-2 x=-\sqrt{48603}-2
Subtract 2 from both sides of the equation.
x^{2}+4x-48599=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-48599\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -48599 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-48599\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+194396}}{2}
Multiply -4 times -48599.
x=\frac{-4±\sqrt{194412}}{2}
Add 16 to 194396.
x=\frac{-4±2\sqrt{48603}}{2}
Take the square root of 194412.
x=\frac{2\sqrt{48603}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{48603}}{2} when ± is plus. Add -4 to 2\sqrt{48603}.
x=\sqrt{48603}-2
Divide -4+2\sqrt{48603} by 2.
x=\frac{-2\sqrt{48603}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{48603}}{2} when ± is minus. Subtract 2\sqrt{48603} from -4.
x=-\sqrt{48603}-2
Divide -4-2\sqrt{48603} by 2.
x=\sqrt{48603}-2 x=-\sqrt{48603}-2
The equation is now solved.
x^{2}+4x-48599=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4x-48599-\left(-48599\right)=-\left(-48599\right)
Add 48599 to both sides of the equation.
x^{2}+4x=-\left(-48599\right)
Subtracting -48599 from itself leaves 0.
x^{2}+4x=48599
Subtract -48599 from 0.
x^{2}+4x+2^{2}=48599+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=48599+4
Square 2.
x^{2}+4x+4=48603
Add 48599 to 4.
\left(x+2\right)^{2}=48603
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{48603}
Take the square root of both sides of the equation.
x+2=\sqrt{48603} x+2=-\sqrt{48603}
Simplify.
x=\sqrt{48603}-2 x=-\sqrt{48603}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}