Solve for x
x=6\sqrt{14}-24\approx -1.550055679
x=-6\sqrt{14}-24\approx -46.449944321
Graph
Share
Copied to clipboard
x^{2}+48x+72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\times 72}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 48 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 72}}{2}
Square 48.
x=\frac{-48±\sqrt{2304-288}}{2}
Multiply -4 times 72.
x=\frac{-48±\sqrt{2016}}{2}
Add 2304 to -288.
x=\frac{-48±12\sqrt{14}}{2}
Take the square root of 2016.
x=\frac{12\sqrt{14}-48}{2}
Now solve the equation x=\frac{-48±12\sqrt{14}}{2} when ± is plus. Add -48 to 12\sqrt{14}.
x=6\sqrt{14}-24
Divide -48+12\sqrt{14} by 2.
x=\frac{-12\sqrt{14}-48}{2}
Now solve the equation x=\frac{-48±12\sqrt{14}}{2} when ± is minus. Subtract 12\sqrt{14} from -48.
x=-6\sqrt{14}-24
Divide -48-12\sqrt{14} by 2.
x=6\sqrt{14}-24 x=-6\sqrt{14}-24
The equation is now solved.
x^{2}+48x+72=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+48x+72-72=-72
Subtract 72 from both sides of the equation.
x^{2}+48x=-72
Subtracting 72 from itself leaves 0.
x^{2}+48x+24^{2}=-72+24^{2}
Divide 48, the coefficient of the x term, by 2 to get 24. Then add the square of 24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+48x+576=-72+576
Square 24.
x^{2}+48x+576=504
Add -72 to 576.
\left(x+24\right)^{2}=504
Factor x^{2}+48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+24\right)^{2}}=\sqrt{504}
Take the square root of both sides of the equation.
x+24=6\sqrt{14} x+24=-6\sqrt{14}
Simplify.
x=6\sqrt{14}-24 x=-6\sqrt{14}-24
Subtract 24 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}