Solve for x (complex solution)
x=\sqrt{59447}-244\approx -0.182445259
x=-\left(\sqrt{59447}+244\right)\approx -487.817554741
Solve for x
x=\sqrt{59447}-244\approx -0.182445259
x=-\sqrt{59447}-244\approx -487.817554741
Graph
Share
Copied to clipboard
x^{2}+488x+89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-488±\sqrt{488^{2}-4\times 89}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 488 for b, and 89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-488±\sqrt{238144-4\times 89}}{2}
Square 488.
x=\frac{-488±\sqrt{238144-356}}{2}
Multiply -4 times 89.
x=\frac{-488±\sqrt{237788}}{2}
Add 238144 to -356.
x=\frac{-488±2\sqrt{59447}}{2}
Take the square root of 237788.
x=\frac{2\sqrt{59447}-488}{2}
Now solve the equation x=\frac{-488±2\sqrt{59447}}{2} when ± is plus. Add -488 to 2\sqrt{59447}.
x=\sqrt{59447}-244
Divide -488+2\sqrt{59447} by 2.
x=\frac{-2\sqrt{59447}-488}{2}
Now solve the equation x=\frac{-488±2\sqrt{59447}}{2} when ± is minus. Subtract 2\sqrt{59447} from -488.
x=-\sqrt{59447}-244
Divide -488-2\sqrt{59447} by 2.
x=\sqrt{59447}-244 x=-\sqrt{59447}-244
The equation is now solved.
x^{2}+488x+89=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+488x+89-89=-89
Subtract 89 from both sides of the equation.
x^{2}+488x=-89
Subtracting 89 from itself leaves 0.
x^{2}+488x+244^{2}=-89+244^{2}
Divide 488, the coefficient of the x term, by 2 to get 244. Then add the square of 244 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+488x+59536=-89+59536
Square 244.
x^{2}+488x+59536=59447
Add -89 to 59536.
\left(x+244\right)^{2}=59447
Factor x^{2}+488x+59536. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+244\right)^{2}}=\sqrt{59447}
Take the square root of both sides of the equation.
x+244=\sqrt{59447} x+244=-\sqrt{59447}
Simplify.
x=\sqrt{59447}-244 x=-\sqrt{59447}-244
Subtract 244 from both sides of the equation.
x^{2}+488x+89=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-488±\sqrt{488^{2}-4\times 89}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 488 for b, and 89 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-488±\sqrt{238144-4\times 89}}{2}
Square 488.
x=\frac{-488±\sqrt{238144-356}}{2}
Multiply -4 times 89.
x=\frac{-488±\sqrt{237788}}{2}
Add 238144 to -356.
x=\frac{-488±2\sqrt{59447}}{2}
Take the square root of 237788.
x=\frac{2\sqrt{59447}-488}{2}
Now solve the equation x=\frac{-488±2\sqrt{59447}}{2} when ± is plus. Add -488 to 2\sqrt{59447}.
x=\sqrt{59447}-244
Divide -488+2\sqrt{59447} by 2.
x=\frac{-2\sqrt{59447}-488}{2}
Now solve the equation x=\frac{-488±2\sqrt{59447}}{2} when ± is minus. Subtract 2\sqrt{59447} from -488.
x=-\sqrt{59447}-244
Divide -488-2\sqrt{59447} by 2.
x=\sqrt{59447}-244 x=-\sqrt{59447}-244
The equation is now solved.
x^{2}+488x+89=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+488x+89-89=-89
Subtract 89 from both sides of the equation.
x^{2}+488x=-89
Subtracting 89 from itself leaves 0.
x^{2}+488x+244^{2}=-89+244^{2}
Divide 488, the coefficient of the x term, by 2 to get 244. Then add the square of 244 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+488x+59536=-89+59536
Square 244.
x^{2}+488x+59536=59447
Add -89 to 59536.
\left(x+244\right)^{2}=59447
Factor x^{2}+488x+59536. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+244\right)^{2}}=\sqrt{59447}
Take the square root of both sides of the equation.
x+244=\sqrt{59447} x+244=-\sqrt{59447}
Simplify.
x=\sqrt{59447}-244 x=-\sqrt{59447}-244
Subtract 244 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}