Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+45-x=-2
Subtract x from both sides.
x^{2}+45-x+2=0
Add 2 to both sides.
x^{2}+47-x=0
Add 45 and 2 to get 47.
x^{2}-x+47=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 47}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 47 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-188}}{2}
Multiply -4 times 47.
x=\frac{-\left(-1\right)±\sqrt{-187}}{2}
Add 1 to -188.
x=\frac{-\left(-1\right)±\sqrt{187}i}{2}
Take the square root of -187.
x=\frac{1±\sqrt{187}i}{2}
The opposite of -1 is 1.
x=\frac{1+\sqrt{187}i}{2}
Now solve the equation x=\frac{1±\sqrt{187}i}{2} when ± is plus. Add 1 to i\sqrt{187}.
x=\frac{-\sqrt{187}i+1}{2}
Now solve the equation x=\frac{1±\sqrt{187}i}{2} when ± is minus. Subtract i\sqrt{187} from 1.
x=\frac{1+\sqrt{187}i}{2} x=\frac{-\sqrt{187}i+1}{2}
The equation is now solved.
x^{2}+45-x=-2
Subtract x from both sides.
x^{2}-x=-2-45
Subtract 45 from both sides.
x^{2}-x=-47
Subtract 45 from -2 to get -47.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-47+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-47+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{187}{4}
Add -47 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{187}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{187}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{187}i}{2} x-\frac{1}{2}=-\frac{\sqrt{187}i}{2}
Simplify.
x=\frac{1+\sqrt{187}i}{2} x=\frac{-\sqrt{187}i+1}{2}
Add \frac{1}{2} to both sides of the equation.