Solve for x
x=5\sqrt{22}-20\approx 3.452078799
x=-5\sqrt{22}-20\approx -43.452078799
Graph
Share
Copied to clipboard
x^{2}+40x-150=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\left(-150\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 40 for b, and -150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-150\right)}}{2}
Square 40.
x=\frac{-40±\sqrt{1600+600}}{2}
Multiply -4 times -150.
x=\frac{-40±\sqrt{2200}}{2}
Add 1600 to 600.
x=\frac{-40±10\sqrt{22}}{2}
Take the square root of 2200.
x=\frac{10\sqrt{22}-40}{2}
Now solve the equation x=\frac{-40±10\sqrt{22}}{2} when ± is plus. Add -40 to 10\sqrt{22}.
x=5\sqrt{22}-20
Divide -40+10\sqrt{22} by 2.
x=\frac{-10\sqrt{22}-40}{2}
Now solve the equation x=\frac{-40±10\sqrt{22}}{2} when ± is minus. Subtract 10\sqrt{22} from -40.
x=-5\sqrt{22}-20
Divide -40-10\sqrt{22} by 2.
x=5\sqrt{22}-20 x=-5\sqrt{22}-20
The equation is now solved.
x^{2}+40x-150=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+40x-150-\left(-150\right)=-\left(-150\right)
Add 150 to both sides of the equation.
x^{2}+40x=-\left(-150\right)
Subtracting -150 from itself leaves 0.
x^{2}+40x=150
Subtract -150 from 0.
x^{2}+40x+20^{2}=150+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=150+400
Square 20.
x^{2}+40x+400=550
Add 150 to 400.
\left(x+20\right)^{2}=550
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{550}
Take the square root of both sides of the equation.
x+20=5\sqrt{22} x+20=-5\sqrt{22}
Simplify.
x=5\sqrt{22}-20 x=-5\sqrt{22}-20
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}