Solve for x (complex solution)
x=-20+20\sqrt{17}i\approx -20+82.462112512i
x=-20\sqrt{17}i-20\approx -20-82.462112512i
Graph
Share
Copied to clipboard
x^{2}+40x+7200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{40^{2}-4\times 7200}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 40 for b, and 7200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\times 7200}}{2}
Square 40.
x=\frac{-40±\sqrt{1600-28800}}{2}
Multiply -4 times 7200.
x=\frac{-40±\sqrt{-27200}}{2}
Add 1600 to -28800.
x=\frac{-40±40\sqrt{17}i}{2}
Take the square root of -27200.
x=\frac{-40+40\sqrt{17}i}{2}
Now solve the equation x=\frac{-40±40\sqrt{17}i}{2} when ± is plus. Add -40 to 40i\sqrt{17}.
x=-20+20\sqrt{17}i
Divide -40+40i\sqrt{17} by 2.
x=\frac{-40\sqrt{17}i-40}{2}
Now solve the equation x=\frac{-40±40\sqrt{17}i}{2} when ± is minus. Subtract 40i\sqrt{17} from -40.
x=-20\sqrt{17}i-20
Divide -40-40i\sqrt{17} by 2.
x=-20+20\sqrt{17}i x=-20\sqrt{17}i-20
The equation is now solved.
x^{2}+40x+7200=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+40x+7200-7200=-7200
Subtract 7200 from both sides of the equation.
x^{2}+40x=-7200
Subtracting 7200 from itself leaves 0.
x^{2}+40x+20^{2}=-7200+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=-7200+400
Square 20.
x^{2}+40x+400=-6800
Add -7200 to 400.
\left(x+20\right)^{2}=-6800
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{-6800}
Take the square root of both sides of the equation.
x+20=20\sqrt{17}i x+20=-20\sqrt{17}i
Simplify.
x=-20+20\sqrt{17}i x=-20\sqrt{17}i-20
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}