Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+40x+120=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-40±\sqrt{40^{2}-4\times 120}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-40±\sqrt{1600-4\times 120}}{2}
Square 40.
x=\frac{-40±\sqrt{1600-480}}{2}
Multiply -4 times 120.
x=\frac{-40±\sqrt{1120}}{2}
Add 1600 to -480.
x=\frac{-40±4\sqrt{70}}{2}
Take the square root of 1120.
x=\frac{4\sqrt{70}-40}{2}
Now solve the equation x=\frac{-40±4\sqrt{70}}{2} when ± is plus. Add -40 to 4\sqrt{70}.
x=2\sqrt{70}-20
Divide -40+4\sqrt{70} by 2.
x=\frac{-4\sqrt{70}-40}{2}
Now solve the equation x=\frac{-40±4\sqrt{70}}{2} when ± is minus. Subtract 4\sqrt{70} from -40.
x=-2\sqrt{70}-20
Divide -40-4\sqrt{70} by 2.
x^{2}+40x+120=\left(x-\left(2\sqrt{70}-20\right)\right)\left(x-\left(-2\sqrt{70}-20\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -20+2\sqrt{70} for x_{1} and -20-2\sqrt{70} for x_{2}.