Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4\sqrt{3}x+46=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4\sqrt{3}±\sqrt{\left(4\sqrt{3}\right)^{2}-4\times 46}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4\sqrt{3} for b, and 46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4\sqrt{3}±\sqrt{48-4\times 46}}{2}
Square 4\sqrt{3}.
x=\frac{-4\sqrt{3}±\sqrt{48-184}}{2}
Multiply -4 times 46.
x=\frac{-4\sqrt{3}±\sqrt{-136}}{2}
Add 48 to -184.
x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2}
Take the square root of -136.
x=\frac{-4\sqrt{3}+2\sqrt{34}i}{2}
Now solve the equation x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2} when ± is plus. Add -4\sqrt{3} to 2i\sqrt{34}.
x=-2\sqrt{3}+\sqrt{34}i
Divide -4\sqrt{3}+2i\sqrt{34} by 2.
x=\frac{-2\sqrt{34}i-4\sqrt{3}}{2}
Now solve the equation x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2} when ± is minus. Subtract 2i\sqrt{34} from -4\sqrt{3}.
x=-\sqrt{34}i-2\sqrt{3}
Divide -4\sqrt{3}-2i\sqrt{34} by 2.
x=-2\sqrt{3}+\sqrt{34}i x=-\sqrt{34}i-2\sqrt{3}
The equation is now solved.
x^{2}+4\sqrt{3}x+46=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4\sqrt{3}x+46-46=-46
Subtract 46 from both sides of the equation.
x^{2}+4\sqrt{3}x=-46
Subtracting 46 from itself leaves 0.
x^{2}+4\sqrt{3}x+\left(2\sqrt{3}\right)^{2}=-46+\left(2\sqrt{3}\right)^{2}
Divide 4\sqrt{3}, the coefficient of the x term, by 2 to get 2\sqrt{3}. Then add the square of 2\sqrt{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4\sqrt{3}x+12=-46+12
Square 2\sqrt{3}.
x^{2}+4\sqrt{3}x+12=-34
Add -46 to 12.
\left(x+2\sqrt{3}\right)^{2}=-34
Factor x^{2}+4\sqrt{3}x+12. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\sqrt{3}\right)^{2}}=\sqrt{-34}
Take the square root of both sides of the equation.
x+2\sqrt{3}=\sqrt{34}i x+2\sqrt{3}=-\sqrt{34}i
Simplify.
x=-2\sqrt{3}+\sqrt{34}i x=-\sqrt{34}i-2\sqrt{3}
Subtract 2\sqrt{3} from both sides of the equation.