Solve for x (complex solution)
x=-2\sqrt{3}+\sqrt{34}i\approx -3.464101615+5.830951895i
x=-\sqrt{34}i-2\sqrt{3}\approx -3.464101615-5.830951895i
Graph
Share
Copied to clipboard
x^{2}+4\sqrt{3}x+46=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4\sqrt{3}±\sqrt{\left(4\sqrt{3}\right)^{2}-4\times 46}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4\sqrt{3} for b, and 46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4\sqrt{3}±\sqrt{48-4\times 46}}{2}
Square 4\sqrt{3}.
x=\frac{-4\sqrt{3}±\sqrt{48-184}}{2}
Multiply -4 times 46.
x=\frac{-4\sqrt{3}±\sqrt{-136}}{2}
Add 48 to -184.
x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2}
Take the square root of -136.
x=\frac{-4\sqrt{3}+2\sqrt{34}i}{2}
Now solve the equation x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2} when ± is plus. Add -4\sqrt{3} to 2i\sqrt{34}.
x=-2\sqrt{3}+\sqrt{34}i
Divide -4\sqrt{3}+2i\sqrt{34} by 2.
x=\frac{-2\sqrt{34}i-4\sqrt{3}}{2}
Now solve the equation x=\frac{-4\sqrt{3}±2\sqrt{34}i}{2} when ± is minus. Subtract 2i\sqrt{34} from -4\sqrt{3}.
x=-\sqrt{34}i-2\sqrt{3}
Divide -4\sqrt{3}-2i\sqrt{34} by 2.
x=-2\sqrt{3}+\sqrt{34}i x=-\sqrt{34}i-2\sqrt{3}
The equation is now solved.
x^{2}+4\sqrt{3}x+46=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+4\sqrt{3}x+46-46=-46
Subtract 46 from both sides of the equation.
x^{2}+4\sqrt{3}x=-46
Subtracting 46 from itself leaves 0.
x^{2}+4\sqrt{3}x+\left(2\sqrt{3}\right)^{2}=-46+\left(2\sqrt{3}\right)^{2}
Divide 4\sqrt{3}, the coefficient of the x term, by 2 to get 2\sqrt{3}. Then add the square of 2\sqrt{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4\sqrt{3}x+12=-46+12
Square 2\sqrt{3}.
x^{2}+4\sqrt{3}x+12=-34
Add -46 to 12.
\left(x+2\sqrt{3}\right)^{2}=-34
Factor x^{2}+4\sqrt{3}x+12. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\sqrt{3}\right)^{2}}=\sqrt{-34}
Take the square root of both sides of the equation.
x+2\sqrt{3}=\sqrt{34}i x+2\sqrt{3}=-\sqrt{34}i
Simplify.
x=-2\sqrt{3}+\sqrt{34}i x=-\sqrt{34}i-2\sqrt{3}
Subtract 2\sqrt{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}