Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x-9=27
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+3x-9-27=27-27
Subtract 27 from both sides of the equation.
x^{2}+3x-9-27=0
Subtracting 27 from itself leaves 0.
x^{2}+3x-36=0
Subtract 27 from -9.
x=\frac{-3±\sqrt{3^{2}-4\left(-36\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-36\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+144}}{2}
Multiply -4 times -36.
x=\frac{-3±\sqrt{153}}{2}
Add 9 to 144.
x=\frac{-3±3\sqrt{17}}{2}
Take the square root of 153.
x=\frac{3\sqrt{17}-3}{2}
Now solve the equation x=\frac{-3±3\sqrt{17}}{2} when ± is plus. Add -3 to 3\sqrt{17}.
x=\frac{-3\sqrt{17}-3}{2}
Now solve the equation x=\frac{-3±3\sqrt{17}}{2} when ± is minus. Subtract 3\sqrt{17} from -3.
x=\frac{3\sqrt{17}-3}{2} x=\frac{-3\sqrt{17}-3}{2}
The equation is now solved.
x^{2}+3x-9=27
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+3x-9-\left(-9\right)=27-\left(-9\right)
Add 9 to both sides of the equation.
x^{2}+3x=27-\left(-9\right)
Subtracting -9 from itself leaves 0.
x^{2}+3x=36
Subtract -9 from 27.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=36+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=36+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{153}{4}
Add 36 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{153}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{3\sqrt{17}}{2} x+\frac{3}{2}=-\frac{3\sqrt{17}}{2}
Simplify.
x=\frac{3\sqrt{17}-3}{2} x=\frac{-3\sqrt{17}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.