Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=3 ab=1\left(-70\right)=-70
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-70. To find a and b, set up a system to be solved.
-1,70 -2,35 -5,14 -7,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -70.
-1+70=69 -2+35=33 -5+14=9 -7+10=3
Calculate the sum for each pair.
a=-7 b=10
The solution is the pair that gives sum 3.
\left(x^{2}-7x\right)+\left(10x-70\right)
Rewrite x^{2}+3x-70 as \left(x^{2}-7x\right)+\left(10x-70\right).
x\left(x-7\right)+10\left(x-7\right)
Factor out x in the first and 10 in the second group.
\left(x-7\right)\left(x+10\right)
Factor out common term x-7 by using distributive property.
x^{2}+3x-70=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-70\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\left(-70\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+280}}{2}
Multiply -4 times -70.
x=\frac{-3±\sqrt{289}}{2}
Add 9 to 280.
x=\frac{-3±17}{2}
Take the square root of 289.
x=\frac{14}{2}
Now solve the equation x=\frac{-3±17}{2} when ± is plus. Add -3 to 17.
x=7
Divide 14 by 2.
x=-\frac{20}{2}
Now solve the equation x=\frac{-3±17}{2} when ± is minus. Subtract 17 from -3.
x=-10
Divide -20 by 2.
x^{2}+3x-70=\left(x-7\right)\left(x-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -10 for x_{2}.
x^{2}+3x-70=\left(x-7\right)\left(x+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.