Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+3x-198=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\left(-198\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{9-4\left(-198\right)}}{2}
Square 3.
x=\frac{-3±\sqrt{9+792}}{2}
Multiply -4 times -198.
x=\frac{-3±\sqrt{801}}{2}
Add 9 to 792.
x=\frac{-3±3\sqrt{89}}{2}
Take the square root of 801.
x=\frac{3\sqrt{89}-3}{2}
Now solve the equation x=\frac{-3±3\sqrt{89}}{2} when ± is plus. Add -3 to 3\sqrt{89}.
x=\frac{-3\sqrt{89}-3}{2}
Now solve the equation x=\frac{-3±3\sqrt{89}}{2} when ± is minus. Subtract 3\sqrt{89} from -3.
x^{2}+3x-198=\left(x-\frac{3\sqrt{89}-3}{2}\right)\left(x-\frac{-3\sqrt{89}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+3\sqrt{89}}{2} for x_{1} and \frac{-3-3\sqrt{89}}{2} for x_{2}.