Solve for x (complex solution)
x=-\frac{3}{2}+\frac{1}{3}i\approx -1.5+0.333333333i
x=-\frac{3}{2}-\frac{1}{3}i\approx -1.5-0.333333333i
Graph
Share
Copied to clipboard
x^{2}+3x+\frac{13}{4}=\frac{8}{9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+3x+\frac{13}{4}-\frac{8}{9}=\frac{8}{9}-\frac{8}{9}
Subtract \frac{8}{9} from both sides of the equation.
x^{2}+3x+\frac{13}{4}-\frac{8}{9}=0
Subtracting \frac{8}{9} from itself leaves 0.
x^{2}+3x+\frac{85}{36}=0
Subtract \frac{8}{9} from \frac{13}{4} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-3±\sqrt{3^{2}-4\times \frac{85}{36}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and \frac{85}{36} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times \frac{85}{36}}}{2}
Square 3.
x=\frac{-3±\sqrt{9-\frac{85}{9}}}{2}
Multiply -4 times \frac{85}{36}.
x=\frac{-3±\sqrt{-\frac{4}{9}}}{2}
Add 9 to -\frac{85}{9}.
x=\frac{-3±\frac{2}{3}i}{2}
Take the square root of -\frac{4}{9}.
x=\frac{-3+\frac{2}{3}i}{2}
Now solve the equation x=\frac{-3±\frac{2}{3}i}{2} when ± is plus. Add -3 to \frac{2}{3}i.
x=-\frac{3}{2}+\frac{1}{3}i
Divide -3+\frac{2}{3}i by 2.
x=\frac{-3-\frac{2}{3}i}{2}
Now solve the equation x=\frac{-3±\frac{2}{3}i}{2} when ± is minus. Subtract \frac{2}{3}i from -3.
x=-\frac{3}{2}-\frac{1}{3}i
Divide -3-\frac{2}{3}i by 2.
x=-\frac{3}{2}+\frac{1}{3}i x=-\frac{3}{2}-\frac{1}{3}i
The equation is now solved.
x^{2}+3x+\frac{13}{4}=\frac{8}{9}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+3x+\frac{13}{4}-\frac{13}{4}=\frac{8}{9}-\frac{13}{4}
Subtract \frac{13}{4} from both sides of the equation.
x^{2}+3x=\frac{8}{9}-\frac{13}{4}
Subtracting \frac{13}{4} from itself leaves 0.
x^{2}+3x=-\frac{85}{36}
Subtract \frac{13}{4} from \frac{8}{9} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{85}{36}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=-\frac{85}{36}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=-\frac{1}{9}
Add -\frac{85}{36} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=-\frac{1}{9}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{1}{9}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{1}{3}i x+\frac{3}{2}=-\frac{1}{3}i
Simplify.
x=-\frac{3}{2}+\frac{1}{3}i x=-\frac{3}{2}-\frac{1}{3}i
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}