Solve for x
x=8
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Share
Copied to clipboard
x^{2}+36-100=-32x+4x^{2}
Subtract 100 from both sides.
x^{2}-64=-32x+4x^{2}
Subtract 100 from 36 to get -64.
x^{2}-64+32x=4x^{2}
Add 32x to both sides.
x^{2}-64+32x-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-64+32x=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+32x-64=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=32 ab=-3\left(-64\right)=192
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-64. To find a and b, set up a system to be solved.
1,192 2,96 3,64 4,48 6,32 8,24 12,16
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 192.
1+192=193 2+96=98 3+64=67 4+48=52 6+32=38 8+24=32 12+16=28
Calculate the sum for each pair.
a=24 b=8
The solution is the pair that gives sum 32.
\left(-3x^{2}+24x\right)+\left(8x-64\right)
Rewrite -3x^{2}+32x-64 as \left(-3x^{2}+24x\right)+\left(8x-64\right).
3x\left(-x+8\right)-8\left(-x+8\right)
Factor out 3x in the first and -8 in the second group.
\left(-x+8\right)\left(3x-8\right)
Factor out common term -x+8 by using distributive property.
x=8 x=\frac{8}{3}
To find equation solutions, solve -x+8=0 and 3x-8=0.
x^{2}+36-100=-32x+4x^{2}
Subtract 100 from both sides.
x^{2}-64=-32x+4x^{2}
Subtract 100 from 36 to get -64.
x^{2}-64+32x=4x^{2}
Add 32x to both sides.
x^{2}-64+32x-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-64+32x=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+32x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-3\right)\left(-64\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 32 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-3\right)\left(-64\right)}}{2\left(-3\right)}
Square 32.
x=\frac{-32±\sqrt{1024+12\left(-64\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-32±\sqrt{1024-768}}{2\left(-3\right)}
Multiply 12 times -64.
x=\frac{-32±\sqrt{256}}{2\left(-3\right)}
Add 1024 to -768.
x=\frac{-32±16}{2\left(-3\right)}
Take the square root of 256.
x=\frac{-32±16}{-6}
Multiply 2 times -3.
x=-\frac{16}{-6}
Now solve the equation x=\frac{-32±16}{-6} when ± is plus. Add -32 to 16.
x=\frac{8}{3}
Reduce the fraction \frac{-16}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{48}{-6}
Now solve the equation x=\frac{-32±16}{-6} when ± is minus. Subtract 16 from -32.
x=8
Divide -48 by -6.
x=\frac{8}{3} x=8
The equation is now solved.
x^{2}+36+32x=100+4x^{2}
Add 32x to both sides.
x^{2}+36+32x-4x^{2}=100
Subtract 4x^{2} from both sides.
-3x^{2}+36+32x=100
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+32x=100-36
Subtract 36 from both sides.
-3x^{2}+32x=64
Subtract 36 from 100 to get 64.
\frac{-3x^{2}+32x}{-3}=\frac{64}{-3}
Divide both sides by -3.
x^{2}+\frac{32}{-3}x=\frac{64}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{32}{3}x=\frac{64}{-3}
Divide 32 by -3.
x^{2}-\frac{32}{3}x=-\frac{64}{3}
Divide 64 by -3.
x^{2}-\frac{32}{3}x+\left(-\frac{16}{3}\right)^{2}=-\frac{64}{3}+\left(-\frac{16}{3}\right)^{2}
Divide -\frac{32}{3}, the coefficient of the x term, by 2 to get -\frac{16}{3}. Then add the square of -\frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{3}x+\frac{256}{9}=-\frac{64}{3}+\frac{256}{9}
Square -\frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{3}x+\frac{256}{9}=\frac{64}{9}
Add -\frac{64}{3} to \frac{256}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}-\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x-\frac{16}{3}=\frac{8}{3} x-\frac{16}{3}=-\frac{8}{3}
Simplify.
x=8 x=\frac{8}{3}
Add \frac{16}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}