Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+34x=7100
Multiply 3550 and 2 to get 7100.
x^{2}+34x-7100=0
Subtract 7100 from both sides.
x=\frac{-34±\sqrt{34^{2}-4\left(-7100\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 34 for b, and -7100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-34±\sqrt{1156-4\left(-7100\right)}}{2}
Square 34.
x=\frac{-34±\sqrt{1156+28400}}{2}
Multiply -4 times -7100.
x=\frac{-34±\sqrt{29556}}{2}
Add 1156 to 28400.
x=\frac{-34±6\sqrt{821}}{2}
Take the square root of 29556.
x=\frac{6\sqrt{821}-34}{2}
Now solve the equation x=\frac{-34±6\sqrt{821}}{2} when ± is plus. Add -34 to 6\sqrt{821}.
x=3\sqrt{821}-17
Divide -34+6\sqrt{821} by 2.
x=\frac{-6\sqrt{821}-34}{2}
Now solve the equation x=\frac{-34±6\sqrt{821}}{2} when ± is minus. Subtract 6\sqrt{821} from -34.
x=-3\sqrt{821}-17
Divide -34-6\sqrt{821} by 2.
x=3\sqrt{821}-17 x=-3\sqrt{821}-17
The equation is now solved.
x^{2}+34x=7100
Multiply 3550 and 2 to get 7100.
x^{2}+34x+17^{2}=7100+17^{2}
Divide 34, the coefficient of the x term, by 2 to get 17. Then add the square of 17 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+34x+289=7100+289
Square 17.
x^{2}+34x+289=7389
Add 7100 to 289.
\left(x+17\right)^{2}=7389
Factor x^{2}+34x+289. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+17\right)^{2}}=\sqrt{7389}
Take the square root of both sides of the equation.
x+17=3\sqrt{821} x+17=-3\sqrt{821}
Simplify.
x=3\sqrt{821}-17 x=-3\sqrt{821}-17
Subtract 17 from both sides of the equation.