Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=31 ab=1\left(-816\right)=-816
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-816. To find a and b, set up a system to be solved.
-1,816 -2,408 -3,272 -4,204 -6,136 -8,102 -12,68 -16,51 -17,48 -24,34
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -816.
-1+816=815 -2+408=406 -3+272=269 -4+204=200 -6+136=130 -8+102=94 -12+68=56 -16+51=35 -17+48=31 -24+34=10
Calculate the sum for each pair.
a=-17 b=48
The solution is the pair that gives sum 31.
\left(x^{2}-17x\right)+\left(48x-816\right)
Rewrite x^{2}+31x-816 as \left(x^{2}-17x\right)+\left(48x-816\right).
x\left(x-17\right)+48\left(x-17\right)
Factor out x in the first and 48 in the second group.
\left(x-17\right)\left(x+48\right)
Factor out common term x-17 by using distributive property.
x^{2}+31x-816=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-31±\sqrt{31^{2}-4\left(-816\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-31±\sqrt{961-4\left(-816\right)}}{2}
Square 31.
x=\frac{-31±\sqrt{961+3264}}{2}
Multiply -4 times -816.
x=\frac{-31±\sqrt{4225}}{2}
Add 961 to 3264.
x=\frac{-31±65}{2}
Take the square root of 4225.
x=\frac{34}{2}
Now solve the equation x=\frac{-31±65}{2} when ± is plus. Add -31 to 65.
x=17
Divide 34 by 2.
x=-\frac{96}{2}
Now solve the equation x=\frac{-31±65}{2} when ± is minus. Subtract 65 from -31.
x=-48
Divide -96 by 2.
x^{2}+31x-816=\left(x-17\right)\left(x-\left(-48\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 17 for x_{1} and -48 for x_{2}.
x^{2}+31x-816=\left(x-17\right)\left(x+48\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.