Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=2 ab=1\left(-8\right)=-8
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=-2 b=4
The solution is the pair that gives sum 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Rewrite x^{2}+2x-8 as \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Factor out x in the first and 4 in the second group.
\left(x-2\right)\left(x+4\right)
Factor out common term x-2 by using distributive property.
x^{2}+2x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+32}}{2}
Multiply -4 times -8.
x=\frac{-2±\sqrt{36}}{2}
Add 4 to 32.
x=\frac{-2±6}{2}
Take the square root of 36.
x=\frac{4}{2}
Now solve the equation x=\frac{-2±6}{2} when ± is plus. Add -2 to 6.
x=2
Divide 4 by 2.
x=-\frac{8}{2}
Now solve the equation x=\frac{-2±6}{2} when ± is minus. Subtract 6 from -2.
x=-4
Divide -8 by 2.
x^{2}+2x-8=\left(x-2\right)\left(x-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -4 for x_{2}.
x^{2}+2x-8=\left(x-2\right)\left(x+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.