Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x+73=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 73}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and 73 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 73}}{2}
Square 2.
x=\frac{-2±\sqrt{4-292}}{2}
Multiply -4 times 73.
x=\frac{-2±\sqrt{-288}}{2}
Add 4 to -292.
x=\frac{-2±12\sqrt{2}i}{2}
Take the square root of -288.
x=\frac{-2+12\sqrt{2}i}{2}
Now solve the equation x=\frac{-2±12\sqrt{2}i}{2} when ± is plus. Add -2 to 12i\sqrt{2}.
x=-1+6\sqrt{2}i
Divide -2+12i\sqrt{2} by 2.
x=\frac{-12\sqrt{2}i-2}{2}
Now solve the equation x=\frac{-2±12\sqrt{2}i}{2} when ± is minus. Subtract 12i\sqrt{2} from -2.
x=-6\sqrt{2}i-1
Divide -2-12i\sqrt{2} by 2.
x=-1+6\sqrt{2}i x=-6\sqrt{2}i-1
The equation is now solved.
x^{2}+2x+73=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x+73-73=-73
Subtract 73 from both sides of the equation.
x^{2}+2x=-73
Subtracting 73 from itself leaves 0.
x^{2}+2x+1^{2}=-73+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-73+1
Square 1.
x^{2}+2x+1=-72
Add -73 to 1.
\left(x+1\right)^{2}=-72
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-72}
Take the square root of both sides of the equation.
x+1=6\sqrt{2}i x+1=-6\sqrt{2}i
Simplify.
x=-1+6\sqrt{2}i x=-6\sqrt{2}i-1
Subtract 1 from both sides of the equation.