Solve for x (complex solution)
x=\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
x=\frac{-\sqrt{3}i-1}{2}\approx -0.5-0.866025404i
Graph
Share
Copied to clipboard
x^{2}+2x+3-4x^{2}=5x+6
Subtract 4x^{2} from both sides.
-3x^{2}+2x+3=5x+6
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+2x+3-5x=6
Subtract 5x from both sides.
-3x^{2}-3x+3=6
Combine 2x and -5x to get -3x.
-3x^{2}-3x+3-6=0
Subtract 6 from both sides.
-3x^{2}-3x-3=0
Subtract 6 from 3 to get -3.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-3\right)\left(-3\right)}}{2\left(-3\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+12\left(-3\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-3\right)±\sqrt{9-36}}{2\left(-3\right)}
Multiply 12 times -3.
x=\frac{-\left(-3\right)±\sqrt{-27}}{2\left(-3\right)}
Add 9 to -36.
x=\frac{-\left(-3\right)±3\sqrt{3}i}{2\left(-3\right)}
Take the square root of -27.
x=\frac{3±3\sqrt{3}i}{2\left(-3\right)}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{3}i}{-6}
Multiply 2 times -3.
x=\frac{3+3\sqrt{3}i}{-6}
Now solve the equation x=\frac{3±3\sqrt{3}i}{-6} when ± is plus. Add 3 to 3i\sqrt{3}.
x=\frac{-\sqrt{3}i-1}{2}
Divide 3+3i\sqrt{3} by -6.
x=\frac{-3\sqrt{3}i+3}{-6}
Now solve the equation x=\frac{3±3\sqrt{3}i}{-6} when ± is minus. Subtract 3i\sqrt{3} from 3.
x=\frac{-1+\sqrt{3}i}{2}
Divide 3-3i\sqrt{3} by -6.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
The equation is now solved.
x^{2}+2x+3-4x^{2}=5x+6
Subtract 4x^{2} from both sides.
-3x^{2}+2x+3=5x+6
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+2x+3-5x=6
Subtract 5x from both sides.
-3x^{2}-3x+3=6
Combine 2x and -5x to get -3x.
-3x^{2}-3x=6-3
Subtract 3 from both sides.
-3x^{2}-3x=3
Subtract 3 from 6 to get 3.
\frac{-3x^{2}-3x}{-3}=\frac{3}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{3}{-3}\right)x=\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+x=\frac{3}{-3}
Divide -3 by -3.
x^{2}+x=-1
Divide 3 by -3.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Add -1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}