Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x+1=-1
Combine 2x and -x to get x.
x^{2}+x+1+1=0
Add 1 to both sides.
x^{2}+x+2=0
Add 1 and 1 to get 2.
x=\frac{-1±\sqrt{1^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2}}{2}
Square 1.
x=\frac{-1±\sqrt{1-8}}{2}
Multiply -4 times 2.
x=\frac{-1±\sqrt{-7}}{2}
Add 1 to -8.
x=\frac{-1±\sqrt{7}i}{2}
Take the square root of -7.
x=\frac{-1+\sqrt{7}i}{2}
Now solve the equation x=\frac{-1±\sqrt{7}i}{2} when ± is plus. Add -1 to i\sqrt{7}.
x=\frac{-\sqrt{7}i-1}{2}
Now solve the equation x=\frac{-1±\sqrt{7}i}{2} when ± is minus. Subtract i\sqrt{7} from -1.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
The equation is now solved.
x^{2}+x+1=-1
Combine 2x and -x to get x.
x^{2}+x=-1-1
Subtract 1 from both sides.
x^{2}+x=-2
Subtract 1 from -1 to get -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-2+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-2+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{7}{4}
Add -2 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{7}i}{2} x+\frac{1}{2}=-\frac{\sqrt{7}i}{2}
Simplify.
x=\frac{-1+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.