Solve for x
x=6\sqrt{61}-14\approx 32.861498055
x=-6\sqrt{61}-14\approx -60.861498055
Graph
Share
Copied to clipboard
x^{2}+28x-2000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-2000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 28 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-2000\right)}}{2}
Square 28.
x=\frac{-28±\sqrt{784+8000}}{2}
Multiply -4 times -2000.
x=\frac{-28±\sqrt{8784}}{2}
Add 784 to 8000.
x=\frac{-28±12\sqrt{61}}{2}
Take the square root of 8784.
x=\frac{12\sqrt{61}-28}{2}
Now solve the equation x=\frac{-28±12\sqrt{61}}{2} when ± is plus. Add -28 to 12\sqrt{61}.
x=6\sqrt{61}-14
Divide -28+12\sqrt{61} by 2.
x=\frac{-12\sqrt{61}-28}{2}
Now solve the equation x=\frac{-28±12\sqrt{61}}{2} when ± is minus. Subtract 12\sqrt{61} from -28.
x=-6\sqrt{61}-14
Divide -28-12\sqrt{61} by 2.
x=6\sqrt{61}-14 x=-6\sqrt{61}-14
The equation is now solved.
x^{2}+28x-2000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+28x-2000-\left(-2000\right)=-\left(-2000\right)
Add 2000 to both sides of the equation.
x^{2}+28x=-\left(-2000\right)
Subtracting -2000 from itself leaves 0.
x^{2}+28x=2000
Subtract -2000 from 0.
x^{2}+28x+14^{2}=2000+14^{2}
Divide 28, the coefficient of the x term, by 2 to get 14. Then add the square of 14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+28x+196=2000+196
Square 14.
x^{2}+28x+196=2196
Add 2000 to 196.
\left(x+14\right)^{2}=2196
Factor x^{2}+28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+14\right)^{2}}=\sqrt{2196}
Take the square root of both sides of the equation.
x+14=6\sqrt{61} x+14=-6\sqrt{61}
Simplify.
x=6\sqrt{61}-14 x=-6\sqrt{61}-14
Subtract 14 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}