Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+26x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-26±\sqrt{26^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{676-4\times 6}}{2}
Square 26.
x=\frac{-26±\sqrt{676-24}}{2}
Multiply -4 times 6.
x=\frac{-26±\sqrt{652}}{2}
Add 676 to -24.
x=\frac{-26±2\sqrt{163}}{2}
Take the square root of 652.
x=\frac{2\sqrt{163}-26}{2}
Now solve the equation x=\frac{-26±2\sqrt{163}}{2} when ± is plus. Add -26 to 2\sqrt{163}.
x=\sqrt{163}-13
Divide -26+2\sqrt{163} by 2.
x=\frac{-2\sqrt{163}-26}{2}
Now solve the equation x=\frac{-26±2\sqrt{163}}{2} when ± is minus. Subtract 2\sqrt{163} from -26.
x=-\sqrt{163}-13
Divide -26-2\sqrt{163} by 2.
x^{2}+26x+6=\left(x-\left(\sqrt{163}-13\right)\right)\left(x-\left(-\sqrt{163}-13\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -13+\sqrt{163} for x_{1} and -13-\sqrt{163} for x_{2}.