Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x+25\right)=0
Factor out x.
x=0 x=-25
To find equation solutions, solve x=0 and x+25=0.
x^{2}+25x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 25 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±25}{2}
Take the square root of 25^{2}.
x=\frac{0}{2}
Now solve the equation x=\frac{-25±25}{2} when ± is plus. Add -25 to 25.
x=0
Divide 0 by 2.
x=-\frac{50}{2}
Now solve the equation x=\frac{-25±25}{2} when ± is minus. Subtract 25 from -25.
x=-25
Divide -50 by 2.
x=0 x=-25
The equation is now solved.
x^{2}+25x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=\left(\frac{25}{2}\right)^{2}
Divide 25, the coefficient of the x term, by 2 to get \frac{25}{2}. Then add the square of \frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+25x+\frac{625}{4}=\frac{625}{4}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{25}{2}\right)^{2}=\frac{625}{4}
Factor x^{2}+25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Take the square root of both sides of the equation.
x+\frac{25}{2}=\frac{25}{2} x+\frac{25}{2}=-\frac{25}{2}
Simplify.
x=0 x=-25
Subtract \frac{25}{2} from both sides of the equation.