Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+23x-45=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-23±\sqrt{23^{2}-4\left(-45\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-23±\sqrt{529-4\left(-45\right)}}{2}
Square 23.
x=\frac{-23±\sqrt{529+180}}{2}
Multiply -4 times -45.
x=\frac{-23±\sqrt{709}}{2}
Add 529 to 180.
x=\frac{\sqrt{709}-23}{2}
Now solve the equation x=\frac{-23±\sqrt{709}}{2} when ± is plus. Add -23 to \sqrt{709}.
x=\frac{-\sqrt{709}-23}{2}
Now solve the equation x=\frac{-23±\sqrt{709}}{2} when ± is minus. Subtract \sqrt{709} from -23.
x^{2}+23x-45=\left(x-\frac{\sqrt{709}-23}{2}\right)\left(x-\frac{-\sqrt{709}-23}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-23+\sqrt{709}}{2} for x_{1} and \frac{-23-\sqrt{709}}{2} for x_{2}.