Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=22 ab=1\left(-104\right)=-104
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-104. To find a and b, set up a system to be solved.
-1,104 -2,52 -4,26 -8,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -104.
-1+104=103 -2+52=50 -4+26=22 -8+13=5
Calculate the sum for each pair.
a=-4 b=26
The solution is the pair that gives sum 22.
\left(x^{2}-4x\right)+\left(26x-104\right)
Rewrite x^{2}+22x-104 as \left(x^{2}-4x\right)+\left(26x-104\right).
x\left(x-4\right)+26\left(x-4\right)
Factor out x in the first and 26 in the second group.
\left(x-4\right)\left(x+26\right)
Factor out common term x-4 by using distributive property.
x^{2}+22x-104=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-22±\sqrt{22^{2}-4\left(-104\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-22±\sqrt{484-4\left(-104\right)}}{2}
Square 22.
x=\frac{-22±\sqrt{484+416}}{2}
Multiply -4 times -104.
x=\frac{-22±\sqrt{900}}{2}
Add 484 to 416.
x=\frac{-22±30}{2}
Take the square root of 900.
x=\frac{8}{2}
Now solve the equation x=\frac{-22±30}{2} when ± is plus. Add -22 to 30.
x=4
Divide 8 by 2.
x=-\frac{52}{2}
Now solve the equation x=\frac{-22±30}{2} when ± is minus. Subtract 30 from -22.
x=-26
Divide -52 by 2.
x^{2}+22x-104=\left(x-4\right)\left(x-\left(-26\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and -26 for x_{2}.
x^{2}+22x-104=\left(x-4\right)\left(x+26\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.