Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=20 ab=-2400
To solve the equation, factor x^{2}+20x-2400 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,2400 -2,1200 -3,800 -4,600 -5,480 -6,400 -8,300 -10,240 -12,200 -15,160 -16,150 -20,120 -24,100 -25,96 -30,80 -32,75 -40,60 -48,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2400.
-1+2400=2399 -2+1200=1198 -3+800=797 -4+600=596 -5+480=475 -6+400=394 -8+300=292 -10+240=230 -12+200=188 -15+160=145 -16+150=134 -20+120=100 -24+100=76 -25+96=71 -30+80=50 -32+75=43 -40+60=20 -48+50=2
Calculate the sum for each pair.
a=-40 b=60
The solution is the pair that gives sum 20.
\left(x-40\right)\left(x+60\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=40 x=-60
To find equation solutions, solve x-40=0 and x+60=0.
a+b=20 ab=1\left(-2400\right)=-2400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2400. To find a and b, set up a system to be solved.
-1,2400 -2,1200 -3,800 -4,600 -5,480 -6,400 -8,300 -10,240 -12,200 -15,160 -16,150 -20,120 -24,100 -25,96 -30,80 -32,75 -40,60 -48,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2400.
-1+2400=2399 -2+1200=1198 -3+800=797 -4+600=596 -5+480=475 -6+400=394 -8+300=292 -10+240=230 -12+200=188 -15+160=145 -16+150=134 -20+120=100 -24+100=76 -25+96=71 -30+80=50 -32+75=43 -40+60=20 -48+50=2
Calculate the sum for each pair.
a=-40 b=60
The solution is the pair that gives sum 20.
\left(x^{2}-40x\right)+\left(60x-2400\right)
Rewrite x^{2}+20x-2400 as \left(x^{2}-40x\right)+\left(60x-2400\right).
x\left(x-40\right)+60\left(x-40\right)
Factor out x in the first and 60 in the second group.
\left(x-40\right)\left(x+60\right)
Factor out common term x-40 by using distributive property.
x=40 x=-60
To find equation solutions, solve x-40=0 and x+60=0.
x^{2}+20x-2400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-2400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-2400\right)}}{2}
Square 20.
x=\frac{-20±\sqrt{400+9600}}{2}
Multiply -4 times -2400.
x=\frac{-20±\sqrt{10000}}{2}
Add 400 to 9600.
x=\frac{-20±100}{2}
Take the square root of 10000.
x=\frac{80}{2}
Now solve the equation x=\frac{-20±100}{2} when ± is plus. Add -20 to 100.
x=40
Divide 80 by 2.
x=-\frac{120}{2}
Now solve the equation x=\frac{-20±100}{2} when ± is minus. Subtract 100 from -20.
x=-60
Divide -120 by 2.
x=40 x=-60
The equation is now solved.
x^{2}+20x-2400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+20x-2400-\left(-2400\right)=-\left(-2400\right)
Add 2400 to both sides of the equation.
x^{2}+20x=-\left(-2400\right)
Subtracting -2400 from itself leaves 0.
x^{2}+20x=2400
Subtract -2400 from 0.
x^{2}+20x+10^{2}=2400+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+20x+100=2400+100
Square 10.
x^{2}+20x+100=2500
Add 2400 to 100.
\left(x+10\right)^{2}=2500
Factor x^{2}+20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+10\right)^{2}}=\sqrt{2500}
Take the square root of both sides of the equation.
x+10=50 x+10=-50
Simplify.
x=40 x=-60
Subtract 10 from both sides of the equation.