Solve for x
x=-225
x=24
Graph
Share
Copied to clipboard
a+b=201 ab=-5400
To solve the equation, factor x^{2}+201x-5400 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,5400 -2,2700 -3,1800 -4,1350 -5,1080 -6,900 -8,675 -9,600 -10,540 -12,450 -15,360 -18,300 -20,270 -24,225 -25,216 -27,200 -30,180 -36,150 -40,135 -45,120 -50,108 -54,100 -60,90 -72,75
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -5400.
-1+5400=5399 -2+2700=2698 -3+1800=1797 -4+1350=1346 -5+1080=1075 -6+900=894 -8+675=667 -9+600=591 -10+540=530 -12+450=438 -15+360=345 -18+300=282 -20+270=250 -24+225=201 -25+216=191 -27+200=173 -30+180=150 -36+150=114 -40+135=95 -45+120=75 -50+108=58 -54+100=46 -60+90=30 -72+75=3
Calculate the sum for each pair.
a=-24 b=225
The solution is the pair that gives sum 201.
\left(x-24\right)\left(x+225\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=24 x=-225
To find equation solutions, solve x-24=0 and x+225=0.
a+b=201 ab=1\left(-5400\right)=-5400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-5400. To find a and b, set up a system to be solved.
-1,5400 -2,2700 -3,1800 -4,1350 -5,1080 -6,900 -8,675 -9,600 -10,540 -12,450 -15,360 -18,300 -20,270 -24,225 -25,216 -27,200 -30,180 -36,150 -40,135 -45,120 -50,108 -54,100 -60,90 -72,75
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -5400.
-1+5400=5399 -2+2700=2698 -3+1800=1797 -4+1350=1346 -5+1080=1075 -6+900=894 -8+675=667 -9+600=591 -10+540=530 -12+450=438 -15+360=345 -18+300=282 -20+270=250 -24+225=201 -25+216=191 -27+200=173 -30+180=150 -36+150=114 -40+135=95 -45+120=75 -50+108=58 -54+100=46 -60+90=30 -72+75=3
Calculate the sum for each pair.
a=-24 b=225
The solution is the pair that gives sum 201.
\left(x^{2}-24x\right)+\left(225x-5400\right)
Rewrite x^{2}+201x-5400 as \left(x^{2}-24x\right)+\left(225x-5400\right).
x\left(x-24\right)+225\left(x-24\right)
Factor out x in the first and 225 in the second group.
\left(x-24\right)\left(x+225\right)
Factor out common term x-24 by using distributive property.
x=24 x=-225
To find equation solutions, solve x-24=0 and x+225=0.
x^{2}+201x-5400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-201±\sqrt{201^{2}-4\left(-5400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 201 for b, and -5400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-201±\sqrt{40401-4\left(-5400\right)}}{2}
Square 201.
x=\frac{-201±\sqrt{40401+21600}}{2}
Multiply -4 times -5400.
x=\frac{-201±\sqrt{62001}}{2}
Add 40401 to 21600.
x=\frac{-201±249}{2}
Take the square root of 62001.
x=\frac{48}{2}
Now solve the equation x=\frac{-201±249}{2} when ± is plus. Add -201 to 249.
x=24
Divide 48 by 2.
x=-\frac{450}{2}
Now solve the equation x=\frac{-201±249}{2} when ± is minus. Subtract 249 from -201.
x=-225
Divide -450 by 2.
x=24 x=-225
The equation is now solved.
x^{2}+201x-5400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+201x-5400-\left(-5400\right)=-\left(-5400\right)
Add 5400 to both sides of the equation.
x^{2}+201x=-\left(-5400\right)
Subtracting -5400 from itself leaves 0.
x^{2}+201x=5400
Subtract -5400 from 0.
x^{2}+201x+\left(\frac{201}{2}\right)^{2}=5400+\left(\frac{201}{2}\right)^{2}
Divide 201, the coefficient of the x term, by 2 to get \frac{201}{2}. Then add the square of \frac{201}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+201x+\frac{40401}{4}=5400+\frac{40401}{4}
Square \frac{201}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+201x+\frac{40401}{4}=\frac{62001}{4}
Add 5400 to \frac{40401}{4}.
\left(x+\frac{201}{2}\right)^{2}=\frac{62001}{4}
Factor x^{2}+201x+\frac{40401}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{201}{2}\right)^{2}}=\sqrt{\frac{62001}{4}}
Take the square root of both sides of the equation.
x+\frac{201}{2}=\frac{249}{2} x+\frac{201}{2}=-\frac{249}{2}
Simplify.
x=24 x=-225
Subtract \frac{201}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}