Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2\left(\frac{3}{5}x^{2}-3\right)^{2}-1=0
Anything divided by one gives itself.
x^{2}+2\left(\frac{9}{25}\left(x^{2}\right)^{2}-\frac{18}{5}x^{2}+9\right)-1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{3}{5}x^{2}-3\right)^{2}.
x^{2}+2\left(\frac{9}{25}x^{4}-\frac{18}{5}x^{2}+9\right)-1=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{2}+\frac{18}{25}x^{4}-\frac{36}{5}x^{2}+18-1=0
Use the distributive property to multiply 2 by \frac{9}{25}x^{4}-\frac{18}{5}x^{2}+9.
-\frac{31}{5}x^{2}+\frac{18}{25}x^{4}+18-1=0
Combine x^{2} and -\frac{36}{5}x^{2} to get -\frac{31}{5}x^{2}.
-\frac{31}{5}x^{2}+\frac{18}{25}x^{4}+17=0
Subtract 1 from 18 to get 17.
\frac{18}{25}t^{2}-\frac{31}{5}t+17=0
Substitute t for x^{2}.
t=\frac{-\left(-\frac{31}{5}\right)±\sqrt{\left(-\frac{31}{5}\right)^{2}-4\times \frac{18}{25}\times 17}}{\frac{18}{25}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{18}{25} for a, -\frac{31}{5} for b, and 17 for c in the quadratic formula.
t=\frac{\frac{31}{5}±\sqrt{-\frac{263}{25}}}{\frac{36}{25}}
Do the calculations.
t=\frac{155+5\sqrt{263}i}{36} t=\frac{-5\sqrt{263}i+155}{36}
Solve the equation t=\frac{\frac{31}{5}±\sqrt{-\frac{263}{25}}}{\frac{36}{25}} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{30600}e^{\frac{\arctan(\frac{\sqrt{263}}{31})i+2\pi i}{2}}}{6} x=\frac{\sqrt[4]{30600}e^{\frac{\arctan(\frac{\sqrt{263}}{31})i}{2}}}{6} x=\frac{\sqrt[4]{30600}e^{-\frac{\arctan(\frac{\sqrt{263}}{31})i}{2}}}{6} x=\frac{\sqrt[4]{30600}e^{\frac{-\arctan(\frac{\sqrt{263}}{31})i+2\pi i}{2}}}{6}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.