Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+1x+2x=5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x=5
Combine 1x and 2x to get 3x.
2x^{2}+3x-5=0
Subtract 5 from both sides.
a+b=3 ab=2\left(-5\right)=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=-2 b=5
The solution is the pair that gives sum 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
Rewrite 2x^{2}+3x-5 as \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
Factor out 2x in the first and 5 in the second group.
\left(x-1\right)\left(2x+5\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{5}{2}
To find equation solutions, solve x-1=0 and 2x+5=0.
2x^{2}+1x+2x=5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x=5
Combine 1x and 2x to get 3x.
2x^{2}+3x-5=0
Subtract 5 from both sides.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
Multiply -8 times -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
Add 9 to 40.
x=\frac{-3±7}{2\times 2}
Take the square root of 49.
x=\frac{-3±7}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{-3±7}{4} when ± is plus. Add -3 to 7.
x=1
Divide 4 by 4.
x=-\frac{10}{4}
Now solve the equation x=\frac{-3±7}{4} when ± is minus. Subtract 7 from -3.
x=-\frac{5}{2}
Reduce the fraction \frac{-10}{4} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{5}{2}
The equation is now solved.
2x^{2}+1x+2x=5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x=5
Combine 1x and 2x to get 3x.
\frac{2x^{2}+3x}{2}=\frac{5}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Add \frac{5}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Simplify.
x=1 x=-\frac{5}{2}
Subtract \frac{3}{4} from both sides of the equation.