Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+19x+14=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 14}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19±\sqrt{361-4\times 14}}{2}
Square 19.
x=\frac{-19±\sqrt{361-56}}{2}
Multiply -4 times 14.
x=\frac{-19±\sqrt{305}}{2}
Add 361 to -56.
x=\frac{\sqrt{305}-19}{2}
Now solve the equation x=\frac{-19±\sqrt{305}}{2} when ± is plus. Add -19 to \sqrt{305}.
x=\frac{-\sqrt{305}-19}{2}
Now solve the equation x=\frac{-19±\sqrt{305}}{2} when ± is minus. Subtract \sqrt{305} from -19.
x^{2}+19x+14=\left(x-\frac{\sqrt{305}-19}{2}\right)\left(x-\frac{-\sqrt{305}-19}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-19+\sqrt{305}}{2} for x_{1} and \frac{-19-\sqrt{305}}{2} for x_{2}.