Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+187x-450=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-187±\sqrt{187^{2}-4\left(-450\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 187 for b, and -450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-187±\sqrt{34969-4\left(-450\right)}}{2}
Square 187.
x=\frac{-187±\sqrt{34969+1800}}{2}
Multiply -4 times -450.
x=\frac{-187±\sqrt{36769}}{2}
Add 34969 to 1800.
x=\frac{\sqrt{36769}-187}{2}
Now solve the equation x=\frac{-187±\sqrt{36769}}{2} when ± is plus. Add -187 to \sqrt{36769}.
x=\frac{-\sqrt{36769}-187}{2}
Now solve the equation x=\frac{-187±\sqrt{36769}}{2} when ± is minus. Subtract \sqrt{36769} from -187.
x=\frac{\sqrt{36769}-187}{2} x=\frac{-\sqrt{36769}-187}{2}
The equation is now solved.
x^{2}+187x-450=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+187x-450-\left(-450\right)=-\left(-450\right)
Add 450 to both sides of the equation.
x^{2}+187x=-\left(-450\right)
Subtracting -450 from itself leaves 0.
x^{2}+187x=450
Subtract -450 from 0.
x^{2}+187x+\left(\frac{187}{2}\right)^{2}=450+\left(\frac{187}{2}\right)^{2}
Divide 187, the coefficient of the x term, by 2 to get \frac{187}{2}. Then add the square of \frac{187}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+187x+\frac{34969}{4}=450+\frac{34969}{4}
Square \frac{187}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+187x+\frac{34969}{4}=\frac{36769}{4}
Add 450 to \frac{34969}{4}.
\left(x+\frac{187}{2}\right)^{2}=\frac{36769}{4}
Factor x^{2}+187x+\frac{34969}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{187}{2}\right)^{2}}=\sqrt{\frac{36769}{4}}
Take the square root of both sides of the equation.
x+\frac{187}{2}=\frac{\sqrt{36769}}{2} x+\frac{187}{2}=-\frac{\sqrt{36769}}{2}
Simplify.
x=\frac{\sqrt{36769}-187}{2} x=\frac{-\sqrt{36769}-187}{2}
Subtract \frac{187}{2} from both sides of the equation.