Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+180x-36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-180±\sqrt{180^{2}-4\left(-36\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-180±\sqrt{32400-4\left(-36\right)}}{2}
Square 180.
x=\frac{-180±\sqrt{32400+144}}{2}
Multiply -4 times -36.
x=\frac{-180±\sqrt{32544}}{2}
Add 32400 to 144.
x=\frac{-180±12\sqrt{226}}{2}
Take the square root of 32544.
x=\frac{12\sqrt{226}-180}{2}
Now solve the equation x=\frac{-180±12\sqrt{226}}{2} when ± is plus. Add -180 to 12\sqrt{226}.
x=6\sqrt{226}-90
Divide -180+12\sqrt{226} by 2.
x=\frac{-12\sqrt{226}-180}{2}
Now solve the equation x=\frac{-180±12\sqrt{226}}{2} when ± is minus. Subtract 12\sqrt{226} from -180.
x=-6\sqrt{226}-90
Divide -180-12\sqrt{226} by 2.
x^{2}+180x-36=\left(x-\left(6\sqrt{226}-90\right)\right)\left(x-\left(-6\sqrt{226}-90\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -90+6\sqrt{226} for x_{1} and -90-6\sqrt{226} for x_{2}.