Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+17.38x-20772=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-17.38±\sqrt{17.38^{2}-4\left(-20772\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 17.38 for b, and -20772 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17.38±\sqrt{302.0644-4\left(-20772\right)}}{2}
Square 17.38 by squaring both the numerator and the denominator of the fraction.
x=\frac{-17.38±\sqrt{302.0644+83088}}{2}
Multiply -4 times -20772.
x=\frac{-17.38±\sqrt{83390.0644}}{2}
Add 302.0644 to 83088.
x=\frac{-17.38±\frac{\sqrt{208475161}}{50}}{2}
Take the square root of 83390.0644.
x=\frac{\sqrt{208475161}-869}{2\times 50}
Now solve the equation x=\frac{-17.38±\frac{\sqrt{208475161}}{50}}{2} when ± is plus. Add -17.38 to \frac{\sqrt{208475161}}{50}.
x=\frac{\sqrt{208475161}-869}{100}
Divide \frac{-869+\sqrt{208475161}}{50} by 2.
x=\frac{-\sqrt{208475161}-869}{2\times 50}
Now solve the equation x=\frac{-17.38±\frac{\sqrt{208475161}}{50}}{2} when ± is minus. Subtract \frac{\sqrt{208475161}}{50} from -17.38.
x=\frac{-\sqrt{208475161}-869}{100}
Divide \frac{-869-\sqrt{208475161}}{50} by 2.
x=\frac{\sqrt{208475161}-869}{100} x=\frac{-\sqrt{208475161}-869}{100}
The equation is now solved.
x^{2}+17.38x-20772=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+17.38x-20772-\left(-20772\right)=-\left(-20772\right)
Add 20772 to both sides of the equation.
x^{2}+17.38x=-\left(-20772\right)
Subtracting -20772 from itself leaves 0.
x^{2}+17.38x=20772
Subtract -20772 from 0.
x^{2}+17.38x+8.69^{2}=20772+8.69^{2}
Divide 17.38, the coefficient of the x term, by 2 to get 8.69. Then add the square of 8.69 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+17.38x+75.5161=20772+75.5161
Square 8.69 by squaring both the numerator and the denominator of the fraction.
x^{2}+17.38x+75.5161=20847.5161
Add 20772 to 75.5161.
\left(x+8.69\right)^{2}=20847.5161
Factor x^{2}+17.38x+75.5161. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8.69\right)^{2}}=\sqrt{20847.5161}
Take the square root of both sides of the equation.
x+8.69=\frac{\sqrt{208475161}}{100} x+8.69=-\frac{\sqrt{208475161}}{100}
Simplify.
x=\frac{\sqrt{208475161}-869}{100} x=\frac{-\sqrt{208475161}-869}{100}
Subtract 8.69 from both sides of the equation.