Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+16x+64-75=-3x^{2}
Subtract 75 from both sides.
x^{2}+16x-11=-3x^{2}
Subtract 75 from 64 to get -11.
x^{2}+16x-11+3x^{2}=0
Add 3x^{2} to both sides.
4x^{2}+16x-11=0
Combine x^{2} and 3x^{2} to get 4x^{2}.
x=\frac{-16±\sqrt{16^{2}-4\times 4\left(-11\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 16 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 4\left(-11\right)}}{2\times 4}
Square 16.
x=\frac{-16±\sqrt{256-16\left(-11\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-16±\sqrt{256+176}}{2\times 4}
Multiply -16 times -11.
x=\frac{-16±\sqrt{432}}{2\times 4}
Add 256 to 176.
x=\frac{-16±12\sqrt{3}}{2\times 4}
Take the square root of 432.
x=\frac{-16±12\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{12\sqrt{3}-16}{8}
Now solve the equation x=\frac{-16±12\sqrt{3}}{8} when ± is plus. Add -16 to 12\sqrt{3}.
x=\frac{3\sqrt{3}}{2}-2
Divide -16+12\sqrt{3} by 8.
x=\frac{-12\sqrt{3}-16}{8}
Now solve the equation x=\frac{-16±12\sqrt{3}}{8} when ± is minus. Subtract 12\sqrt{3} from -16.
x=-\frac{3\sqrt{3}}{2}-2
Divide -16-12\sqrt{3} by 8.
x=\frac{3\sqrt{3}}{2}-2 x=-\frac{3\sqrt{3}}{2}-2
The equation is now solved.
x^{2}+16x+64+3x^{2}=75
Add 3x^{2} to both sides.
4x^{2}+16x+64=75
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}+16x=75-64
Subtract 64 from both sides.
4x^{2}+16x=11
Subtract 64 from 75 to get 11.
\frac{4x^{2}+16x}{4}=\frac{11}{4}
Divide both sides by 4.
x^{2}+\frac{16}{4}x=\frac{11}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+4x=\frac{11}{4}
Divide 16 by 4.
x^{2}+4x+2^{2}=\frac{11}{4}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=\frac{11}{4}+4
Square 2.
x^{2}+4x+4=\frac{27}{4}
Add \frac{11}{4} to 4.
\left(x+2\right)^{2}=\frac{27}{4}
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{\frac{27}{4}}
Take the square root of both sides of the equation.
x+2=\frac{3\sqrt{3}}{2} x+2=-\frac{3\sqrt{3}}{2}
Simplify.
x=\frac{3\sqrt{3}}{2}-2 x=-\frac{3\sqrt{3}}{2}-2
Subtract 2 from both sides of the equation.