Solve for x (complex solution)
x=\frac{-15+5\sqrt{1031}i}{2}\approx -7.5+80.27297179i
x=\frac{-5\sqrt{1031}i-15}{2}\approx -7.5-80.27297179i
Graph
Share
Copied to clipboard
x^{2}+15x+6500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 6500}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 15 for b, and 6500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 6500}}{2}
Square 15.
x=\frac{-15±\sqrt{225-26000}}{2}
Multiply -4 times 6500.
x=\frac{-15±\sqrt{-25775}}{2}
Add 225 to -26000.
x=\frac{-15±5\sqrt{1031}i}{2}
Take the square root of -25775.
x=\frac{-15+5\sqrt{1031}i}{2}
Now solve the equation x=\frac{-15±5\sqrt{1031}i}{2} when ± is plus. Add -15 to 5i\sqrt{1031}.
x=\frac{-5\sqrt{1031}i-15}{2}
Now solve the equation x=\frac{-15±5\sqrt{1031}i}{2} when ± is minus. Subtract 5i\sqrt{1031} from -15.
x=\frac{-15+5\sqrt{1031}i}{2} x=\frac{-5\sqrt{1031}i-15}{2}
The equation is now solved.
x^{2}+15x+6500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+15x+6500-6500=-6500
Subtract 6500 from both sides of the equation.
x^{2}+15x=-6500
Subtracting 6500 from itself leaves 0.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=-6500+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=-6500+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=-\frac{25775}{4}
Add -6500 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=-\frac{25775}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{-\frac{25775}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{5\sqrt{1031}i}{2} x+\frac{15}{2}=-\frac{5\sqrt{1031}i}{2}
Simplify.
x=\frac{-15+5\sqrt{1031}i}{2} x=\frac{-5\sqrt{1031}i-15}{2}
Subtract \frac{15}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}