Solve for x
x=-56
x=42
Graph
Share
Copied to clipboard
a+b=14 ab=-2352
To solve the equation, factor x^{2}+14x-2352 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,2352 -2,1176 -3,784 -4,588 -6,392 -7,336 -8,294 -12,196 -14,168 -16,147 -21,112 -24,98 -28,84 -42,56 -48,49
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2352.
-1+2352=2351 -2+1176=1174 -3+784=781 -4+588=584 -6+392=386 -7+336=329 -8+294=286 -12+196=184 -14+168=154 -16+147=131 -21+112=91 -24+98=74 -28+84=56 -42+56=14 -48+49=1
Calculate the sum for each pair.
a=-42 b=56
The solution is the pair that gives sum 14.
\left(x-42\right)\left(x+56\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=42 x=-56
To find equation solutions, solve x-42=0 and x+56=0.
a+b=14 ab=1\left(-2352\right)=-2352
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2352. To find a and b, set up a system to be solved.
-1,2352 -2,1176 -3,784 -4,588 -6,392 -7,336 -8,294 -12,196 -14,168 -16,147 -21,112 -24,98 -28,84 -42,56 -48,49
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2352.
-1+2352=2351 -2+1176=1174 -3+784=781 -4+588=584 -6+392=386 -7+336=329 -8+294=286 -12+196=184 -14+168=154 -16+147=131 -21+112=91 -24+98=74 -28+84=56 -42+56=14 -48+49=1
Calculate the sum for each pair.
a=-42 b=56
The solution is the pair that gives sum 14.
\left(x^{2}-42x\right)+\left(56x-2352\right)
Rewrite x^{2}+14x-2352 as \left(x^{2}-42x\right)+\left(56x-2352\right).
x\left(x-42\right)+56\left(x-42\right)
Factor out x in the first and 56 in the second group.
\left(x-42\right)\left(x+56\right)
Factor out common term x-42 by using distributive property.
x=42 x=-56
To find equation solutions, solve x-42=0 and x+56=0.
x^{2}+14x-2352=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\left(-2352\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and -2352 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\left(-2352\right)}}{2}
Square 14.
x=\frac{-14±\sqrt{196+9408}}{2}
Multiply -4 times -2352.
x=\frac{-14±\sqrt{9604}}{2}
Add 196 to 9408.
x=\frac{-14±98}{2}
Take the square root of 9604.
x=\frac{84}{2}
Now solve the equation x=\frac{-14±98}{2} when ± is plus. Add -14 to 98.
x=42
Divide 84 by 2.
x=-\frac{112}{2}
Now solve the equation x=\frac{-14±98}{2} when ± is minus. Subtract 98 from -14.
x=-56
Divide -112 by 2.
x=42 x=-56
The equation is now solved.
x^{2}+14x-2352=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+14x-2352-\left(-2352\right)=-\left(-2352\right)
Add 2352 to both sides of the equation.
x^{2}+14x=-\left(-2352\right)
Subtracting -2352 from itself leaves 0.
x^{2}+14x=2352
Subtract -2352 from 0.
x^{2}+14x+7^{2}=2352+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=2352+49
Square 7.
x^{2}+14x+49=2401
Add 2352 to 49.
\left(x+7\right)^{2}=2401
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{2401}
Take the square root of both sides of the equation.
x+7=49 x+7=-49
Simplify.
x=42 x=-56
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}