Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+14x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\times 4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\times 4}}{2}
Square 14.
x=\frac{-14±\sqrt{196-16}}{2}
Multiply -4 times 4.
x=\frac{-14±\sqrt{180}}{2}
Add 196 to -16.
x=\frac{-14±6\sqrt{5}}{2}
Take the square root of 180.
x=\frac{6\sqrt{5}-14}{2}
Now solve the equation x=\frac{-14±6\sqrt{5}}{2} when ± is plus. Add -14 to 6\sqrt{5}.
x=3\sqrt{5}-7
Divide -14+6\sqrt{5} by 2.
x=\frac{-6\sqrt{5}-14}{2}
Now solve the equation x=\frac{-14±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from -14.
x=-3\sqrt{5}-7
Divide -14-6\sqrt{5} by 2.
x^{2}+14x+4=\left(x-\left(3\sqrt{5}-7\right)\right)\left(x-\left(-3\sqrt{5}-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7+3\sqrt{5} for x_{1} and -7-3\sqrt{5} for x_{2}.