Solve for x
x=-150
x=10
Graph
Share
Copied to clipboard
a+b=140 ab=-1500
To solve the equation, factor x^{2}+140x-1500 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,1500 -2,750 -3,500 -4,375 -5,300 -6,250 -10,150 -12,125 -15,100 -20,75 -25,60 -30,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1500.
-1+1500=1499 -2+750=748 -3+500=497 -4+375=371 -5+300=295 -6+250=244 -10+150=140 -12+125=113 -15+100=85 -20+75=55 -25+60=35 -30+50=20
Calculate the sum for each pair.
a=-10 b=150
The solution is the pair that gives sum 140.
\left(x-10\right)\left(x+150\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=-150
To find equation solutions, solve x-10=0 and x+150=0.
a+b=140 ab=1\left(-1500\right)=-1500
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-1500. To find a and b, set up a system to be solved.
-1,1500 -2,750 -3,500 -4,375 -5,300 -6,250 -10,150 -12,125 -15,100 -20,75 -25,60 -30,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1500.
-1+1500=1499 -2+750=748 -3+500=497 -4+375=371 -5+300=295 -6+250=244 -10+150=140 -12+125=113 -15+100=85 -20+75=55 -25+60=35 -30+50=20
Calculate the sum for each pair.
a=-10 b=150
The solution is the pair that gives sum 140.
\left(x^{2}-10x\right)+\left(150x-1500\right)
Rewrite x^{2}+140x-1500 as \left(x^{2}-10x\right)+\left(150x-1500\right).
x\left(x-10\right)+150\left(x-10\right)
Factor out x in the first and 150 in the second group.
\left(x-10\right)\left(x+150\right)
Factor out common term x-10 by using distributive property.
x=10 x=-150
To find equation solutions, solve x-10=0 and x+150=0.
x^{2}+140x-1500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-140±\sqrt{140^{2}-4\left(-1500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 140 for b, and -1500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-140±\sqrt{19600-4\left(-1500\right)}}{2}
Square 140.
x=\frac{-140±\sqrt{19600+6000}}{2}
Multiply -4 times -1500.
x=\frac{-140±\sqrt{25600}}{2}
Add 19600 to 6000.
x=\frac{-140±160}{2}
Take the square root of 25600.
x=\frac{20}{2}
Now solve the equation x=\frac{-140±160}{2} when ± is plus. Add -140 to 160.
x=10
Divide 20 by 2.
x=-\frac{300}{2}
Now solve the equation x=\frac{-140±160}{2} when ± is minus. Subtract 160 from -140.
x=-150
Divide -300 by 2.
x=10 x=-150
The equation is now solved.
x^{2}+140x-1500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+140x-1500-\left(-1500\right)=-\left(-1500\right)
Add 1500 to both sides of the equation.
x^{2}+140x=-\left(-1500\right)
Subtracting -1500 from itself leaves 0.
x^{2}+140x=1500
Subtract -1500 from 0.
x^{2}+140x+70^{2}=1500+70^{2}
Divide 140, the coefficient of the x term, by 2 to get 70. Then add the square of 70 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+140x+4900=1500+4900
Square 70.
x^{2}+140x+4900=6400
Add 1500 to 4900.
\left(x+70\right)^{2}=6400
Factor x^{2}+140x+4900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+70\right)^{2}}=\sqrt{6400}
Take the square root of both sides of the equation.
x+70=80 x+70=-80
Simplify.
x=10 x=-150
Subtract 70 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}