Factor
\left(x-5\right)\left(x+18\right)
Evaluate
\left(x-5\right)\left(x+18\right)
Graph
Share
Copied to clipboard
a+b=13 ab=1\left(-90\right)=-90
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-90. To find a and b, set up a system to be solved.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Calculate the sum for each pair.
a=-5 b=18
The solution is the pair that gives sum 13.
\left(x^{2}-5x\right)+\left(18x-90\right)
Rewrite x^{2}+13x-90 as \left(x^{2}-5x\right)+\left(18x-90\right).
x\left(x-5\right)+18\left(x-5\right)
Factor out x in the first and 18 in the second group.
\left(x-5\right)\left(x+18\right)
Factor out common term x-5 by using distributive property.
x^{2}+13x-90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-13±\sqrt{13^{2}-4\left(-90\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{169-4\left(-90\right)}}{2}
Square 13.
x=\frac{-13±\sqrt{169+360}}{2}
Multiply -4 times -90.
x=\frac{-13±\sqrt{529}}{2}
Add 169 to 360.
x=\frac{-13±23}{2}
Take the square root of 529.
x=\frac{10}{2}
Now solve the equation x=\frac{-13±23}{2} when ± is plus. Add -13 to 23.
x=5
Divide 10 by 2.
x=-\frac{36}{2}
Now solve the equation x=\frac{-13±23}{2} when ± is minus. Subtract 23 from -13.
x=-18
Divide -36 by 2.
x^{2}+13x-90=\left(x-5\right)\left(x-\left(-18\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -18 for x_{2}.
x^{2}+13x-90=\left(x-5\right)\left(x+18\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}