Solve for x
x=-60
x=48
Graph
Share
Copied to clipboard
a+b=12 ab=-2880
To solve the equation, factor x^{2}+12x-2880 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,2880 -2,1440 -3,960 -4,720 -5,576 -6,480 -8,360 -9,320 -10,288 -12,240 -15,192 -16,180 -18,160 -20,144 -24,120 -30,96 -32,90 -36,80 -40,72 -45,64 -48,60
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2880.
-1+2880=2879 -2+1440=1438 -3+960=957 -4+720=716 -5+576=571 -6+480=474 -8+360=352 -9+320=311 -10+288=278 -12+240=228 -15+192=177 -16+180=164 -18+160=142 -20+144=124 -24+120=96 -30+96=66 -32+90=58 -36+80=44 -40+72=32 -45+64=19 -48+60=12
Calculate the sum for each pair.
a=-48 b=60
The solution is the pair that gives sum 12.
\left(x-48\right)\left(x+60\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=48 x=-60
To find equation solutions, solve x-48=0 and x+60=0.
a+b=12 ab=1\left(-2880\right)=-2880
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2880. To find a and b, set up a system to be solved.
-1,2880 -2,1440 -3,960 -4,720 -5,576 -6,480 -8,360 -9,320 -10,288 -12,240 -15,192 -16,180 -18,160 -20,144 -24,120 -30,96 -32,90 -36,80 -40,72 -45,64 -48,60
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2880.
-1+2880=2879 -2+1440=1438 -3+960=957 -4+720=716 -5+576=571 -6+480=474 -8+360=352 -9+320=311 -10+288=278 -12+240=228 -15+192=177 -16+180=164 -18+160=142 -20+144=124 -24+120=96 -30+96=66 -32+90=58 -36+80=44 -40+72=32 -45+64=19 -48+60=12
Calculate the sum for each pair.
a=-48 b=60
The solution is the pair that gives sum 12.
\left(x^{2}-48x\right)+\left(60x-2880\right)
Rewrite x^{2}+12x-2880 as \left(x^{2}-48x\right)+\left(60x-2880\right).
x\left(x-48\right)+60\left(x-48\right)
Factor out x in the first and 60 in the second group.
\left(x-48\right)\left(x+60\right)
Factor out common term x-48 by using distributive property.
x=48 x=-60
To find equation solutions, solve x-48=0 and x+60=0.
x^{2}+12x-2880=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-2880\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 12 for b, and -2880 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-2880\right)}}{2}
Square 12.
x=\frac{-12±\sqrt{144+11520}}{2}
Multiply -4 times -2880.
x=\frac{-12±\sqrt{11664}}{2}
Add 144 to 11520.
x=\frac{-12±108}{2}
Take the square root of 11664.
x=\frac{96}{2}
Now solve the equation x=\frac{-12±108}{2} when ± is plus. Add -12 to 108.
x=48
Divide 96 by 2.
x=-\frac{120}{2}
Now solve the equation x=\frac{-12±108}{2} when ± is minus. Subtract 108 from -12.
x=-60
Divide -120 by 2.
x=48 x=-60
The equation is now solved.
x^{2}+12x-2880=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+12x-2880-\left(-2880\right)=-\left(-2880\right)
Add 2880 to both sides of the equation.
x^{2}+12x=-\left(-2880\right)
Subtracting -2880 from itself leaves 0.
x^{2}+12x=2880
Subtract -2880 from 0.
x^{2}+12x+6^{2}=2880+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=2880+36
Square 6.
x^{2}+12x+36=2916
Add 2880 to 36.
\left(x+6\right)^{2}=2916
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{2916}
Take the square root of both sides of the equation.
x+6=54 x+6=-54
Simplify.
x=48 x=-60
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}