Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+12x+24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 24}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 24}}{2}
Square 12.
x=\frac{-12±\sqrt{144-96}}{2}
Multiply -4 times 24.
x=\frac{-12±\sqrt{48}}{2}
Add 144 to -96.
x=\frac{-12±4\sqrt{3}}{2}
Take the square root of 48.
x=\frac{4\sqrt{3}-12}{2}
Now solve the equation x=\frac{-12±4\sqrt{3}}{2} when ± is plus. Add -12 to 4\sqrt{3}.
x=2\sqrt{3}-6
Divide -12+4\sqrt{3} by 2.
x=\frac{-4\sqrt{3}-12}{2}
Now solve the equation x=\frac{-12±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from -12.
x=-2\sqrt{3}-6
Divide -12-4\sqrt{3} by 2.
x^{2}+12x+24=\left(x-\left(2\sqrt{3}-6\right)\right)\left(x-\left(-2\sqrt{3}-6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -6+2\sqrt{3} for x_{1} and -6-2\sqrt{3} for x_{2}.