Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=11 ab=1\left(-12\right)=-12
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-1 b=12
The solution is the pair that gives sum 11.
\left(x^{2}-x\right)+\left(12x-12\right)
Rewrite x^{2}+11x-12 as \left(x^{2}-x\right)+\left(12x-12\right).
x\left(x-1\right)+12\left(x-1\right)
Factor out x in the first and 12 in the second group.
\left(x-1\right)\left(x+12\right)
Factor out common term x-1 by using distributive property.
x^{2}+11x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-11±\sqrt{11^{2}-4\left(-12\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{121-4\left(-12\right)}}{2}
Square 11.
x=\frac{-11±\sqrt{121+48}}{2}
Multiply -4 times -12.
x=\frac{-11±\sqrt{169}}{2}
Add 121 to 48.
x=\frac{-11±13}{2}
Take the square root of 169.
x=\frac{2}{2}
Now solve the equation x=\frac{-11±13}{2} when ± is plus. Add -11 to 13.
x=1
Divide 2 by 2.
x=-\frac{24}{2}
Now solve the equation x=\frac{-11±13}{2} when ± is minus. Subtract 13 from -11.
x=-12
Divide -24 by 2.
x^{2}+11x-12=\left(x-1\right)\left(x-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -12 for x_{2}.
x^{2}+11x-12=\left(x-1\right)\left(x+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.