Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+10x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\left(-16\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+64}}{2}
Multiply -4 times -16.
x=\frac{-10±\sqrt{164}}{2}
Add 100 to 64.
x=\frac{-10±2\sqrt{41}}{2}
Take the square root of 164.
x=\frac{2\sqrt{41}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{41}}{2} when ± is plus. Add -10 to 2\sqrt{41}.
x=\sqrt{41}-5
Divide -10+2\sqrt{41} by 2.
x=\frac{-2\sqrt{41}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{41}}{2} when ± is minus. Subtract 2\sqrt{41} from -10.
x=-\sqrt{41}-5
Divide -10-2\sqrt{41} by 2.
x^{2}+10x-16=\left(x-\left(\sqrt{41}-5\right)\right)\left(x-\left(-\sqrt{41}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+\sqrt{41} for x_{1} and -5-\sqrt{41} for x_{2}.