Factor
\left(x-30\right)\left(x+40\right)
Evaluate
\left(x-30\right)\left(x+40\right)
Graph
Share
Copied to clipboard
a+b=10 ab=1\left(-1200\right)=-1200
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-1200. To find a and b, set up a system to be solved.
-1,1200 -2,600 -3,400 -4,300 -5,240 -6,200 -8,150 -10,120 -12,100 -15,80 -16,75 -20,60 -24,50 -25,48 -30,40
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1200.
-1+1200=1199 -2+600=598 -3+400=397 -4+300=296 -5+240=235 -6+200=194 -8+150=142 -10+120=110 -12+100=88 -15+80=65 -16+75=59 -20+60=40 -24+50=26 -25+48=23 -30+40=10
Calculate the sum for each pair.
a=-30 b=40
The solution is the pair that gives sum 10.
\left(x^{2}-30x\right)+\left(40x-1200\right)
Rewrite x^{2}+10x-1200 as \left(x^{2}-30x\right)+\left(40x-1200\right).
x\left(x-30\right)+40\left(x-30\right)
Factor out x in the first and 40 in the second group.
\left(x-30\right)\left(x+40\right)
Factor out common term x-30 by using distributive property.
x^{2}+10x-1200=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-1200\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{100-4\left(-1200\right)}}{2}
Square 10.
x=\frac{-10±\sqrt{100+4800}}{2}
Multiply -4 times -1200.
x=\frac{-10±\sqrt{4900}}{2}
Add 100 to 4800.
x=\frac{-10±70}{2}
Take the square root of 4900.
x=\frac{60}{2}
Now solve the equation x=\frac{-10±70}{2} when ± is plus. Add -10 to 70.
x=30
Divide 60 by 2.
x=-\frac{80}{2}
Now solve the equation x=\frac{-10±70}{2} when ± is minus. Subtract 70 from -10.
x=-40
Divide -80 by 2.
x^{2}+10x-1200=\left(x-30\right)\left(x-\left(-40\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 30 for x_{1} and -40 for x_{2}.
x^{2}+10x-1200=\left(x-30\right)\left(x+40\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}