Solve for x
x=-600
x=500
Graph
Share
Copied to clipboard
a+b=100 ab=-300000
To solve the equation, factor x^{2}+100x-300000 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,300000 -2,150000 -3,100000 -4,75000 -5,60000 -6,50000 -8,37500 -10,30000 -12,25000 -15,20000 -16,18750 -20,15000 -24,12500 -25,12000 -30,10000 -32,9375 -40,7500 -48,6250 -50,6000 -60,5000 -75,4000 -80,3750 -96,3125 -100,3000 -120,2500 -125,2400 -150,2000 -160,1875 -200,1500 -240,1250 -250,1200 -300,1000 -375,800 -400,750 -480,625 -500,600
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -300000.
-1+300000=299999 -2+150000=149998 -3+100000=99997 -4+75000=74996 -5+60000=59995 -6+50000=49994 -8+37500=37492 -10+30000=29990 -12+25000=24988 -15+20000=19985 -16+18750=18734 -20+15000=14980 -24+12500=12476 -25+12000=11975 -30+10000=9970 -32+9375=9343 -40+7500=7460 -48+6250=6202 -50+6000=5950 -60+5000=4940 -75+4000=3925 -80+3750=3670 -96+3125=3029 -100+3000=2900 -120+2500=2380 -125+2400=2275 -150+2000=1850 -160+1875=1715 -200+1500=1300 -240+1250=1010 -250+1200=950 -300+1000=700 -375+800=425 -400+750=350 -480+625=145 -500+600=100
Calculate the sum for each pair.
a=-500 b=600
The solution is the pair that gives sum 100.
\left(x-500\right)\left(x+600\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=500 x=-600
To find equation solutions, solve x-500=0 and x+600=0.
a+b=100 ab=1\left(-300000\right)=-300000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-300000. To find a and b, set up a system to be solved.
-1,300000 -2,150000 -3,100000 -4,75000 -5,60000 -6,50000 -8,37500 -10,30000 -12,25000 -15,20000 -16,18750 -20,15000 -24,12500 -25,12000 -30,10000 -32,9375 -40,7500 -48,6250 -50,6000 -60,5000 -75,4000 -80,3750 -96,3125 -100,3000 -120,2500 -125,2400 -150,2000 -160,1875 -200,1500 -240,1250 -250,1200 -300,1000 -375,800 -400,750 -480,625 -500,600
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -300000.
-1+300000=299999 -2+150000=149998 -3+100000=99997 -4+75000=74996 -5+60000=59995 -6+50000=49994 -8+37500=37492 -10+30000=29990 -12+25000=24988 -15+20000=19985 -16+18750=18734 -20+15000=14980 -24+12500=12476 -25+12000=11975 -30+10000=9970 -32+9375=9343 -40+7500=7460 -48+6250=6202 -50+6000=5950 -60+5000=4940 -75+4000=3925 -80+3750=3670 -96+3125=3029 -100+3000=2900 -120+2500=2380 -125+2400=2275 -150+2000=1850 -160+1875=1715 -200+1500=1300 -240+1250=1010 -250+1200=950 -300+1000=700 -375+800=425 -400+750=350 -480+625=145 -500+600=100
Calculate the sum for each pair.
a=-500 b=600
The solution is the pair that gives sum 100.
\left(x^{2}-500x\right)+\left(600x-300000\right)
Rewrite x^{2}+100x-300000 as \left(x^{2}-500x\right)+\left(600x-300000\right).
x\left(x-500\right)+600\left(x-500\right)
Factor out x in the first and 600 in the second group.
\left(x-500\right)\left(x+600\right)
Factor out common term x-500 by using distributive property.
x=500 x=-600
To find equation solutions, solve x-500=0 and x+600=0.
x^{2}+100x-300000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-300000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 100 for b, and -300000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-300000\right)}}{2}
Square 100.
x=\frac{-100±\sqrt{10000+1200000}}{2}
Multiply -4 times -300000.
x=\frac{-100±\sqrt{1210000}}{2}
Add 10000 to 1200000.
x=\frac{-100±1100}{2}
Take the square root of 1210000.
x=\frac{1000}{2}
Now solve the equation x=\frac{-100±1100}{2} when ± is plus. Add -100 to 1100.
x=500
Divide 1000 by 2.
x=-\frac{1200}{2}
Now solve the equation x=\frac{-100±1100}{2} when ± is minus. Subtract 1100 from -100.
x=-600
Divide -1200 by 2.
x=500 x=-600
The equation is now solved.
x^{2}+100x-300000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+100x-300000-\left(-300000\right)=-\left(-300000\right)
Add 300000 to both sides of the equation.
x^{2}+100x=-\left(-300000\right)
Subtracting -300000 from itself leaves 0.
x^{2}+100x=300000
Subtract -300000 from 0.
x^{2}+100x+50^{2}=300000+50^{2}
Divide 100, the coefficient of the x term, by 2 to get 50. Then add the square of 50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+100x+2500=300000+2500
Square 50.
x^{2}+100x+2500=302500
Add 300000 to 2500.
\left(x+50\right)^{2}=302500
Factor x^{2}+100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+50\right)^{2}}=\sqrt{302500}
Take the square root of both sides of the equation.
x+50=550 x+50=-550
Simplify.
x=500 x=-600
Subtract 50 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}