Solve for x
x=-120
x=20
Graph
Share
Copied to clipboard
a+b=100 ab=-2400
To solve the equation, factor x^{2}+100x-2400 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,2400 -2,1200 -3,800 -4,600 -5,480 -6,400 -8,300 -10,240 -12,200 -15,160 -16,150 -20,120 -24,100 -25,96 -30,80 -32,75 -40,60 -48,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2400.
-1+2400=2399 -2+1200=1198 -3+800=797 -4+600=596 -5+480=475 -6+400=394 -8+300=292 -10+240=230 -12+200=188 -15+160=145 -16+150=134 -20+120=100 -24+100=76 -25+96=71 -30+80=50 -32+75=43 -40+60=20 -48+50=2
Calculate the sum for each pair.
a=-20 b=120
The solution is the pair that gives sum 100.
\left(x-20\right)\left(x+120\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=20 x=-120
To find equation solutions, solve x-20=0 and x+120=0.
a+b=100 ab=1\left(-2400\right)=-2400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-2400. To find a and b, set up a system to be solved.
-1,2400 -2,1200 -3,800 -4,600 -5,480 -6,400 -8,300 -10,240 -12,200 -15,160 -16,150 -20,120 -24,100 -25,96 -30,80 -32,75 -40,60 -48,50
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2400.
-1+2400=2399 -2+1200=1198 -3+800=797 -4+600=596 -5+480=475 -6+400=394 -8+300=292 -10+240=230 -12+200=188 -15+160=145 -16+150=134 -20+120=100 -24+100=76 -25+96=71 -30+80=50 -32+75=43 -40+60=20 -48+50=2
Calculate the sum for each pair.
a=-20 b=120
The solution is the pair that gives sum 100.
\left(x^{2}-20x\right)+\left(120x-2400\right)
Rewrite x^{2}+100x-2400 as \left(x^{2}-20x\right)+\left(120x-2400\right).
x\left(x-20\right)+120\left(x-20\right)
Factor out x in the first and 120 in the second group.
\left(x-20\right)\left(x+120\right)
Factor out common term x-20 by using distributive property.
x=20 x=-120
To find equation solutions, solve x-20=0 and x+120=0.
x^{2}+100x-2400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-2400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 100 for b, and -2400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-2400\right)}}{2}
Square 100.
x=\frac{-100±\sqrt{10000+9600}}{2}
Multiply -4 times -2400.
x=\frac{-100±\sqrt{19600}}{2}
Add 10000 to 9600.
x=\frac{-100±140}{2}
Take the square root of 19600.
x=\frac{40}{2}
Now solve the equation x=\frac{-100±140}{2} when ± is plus. Add -100 to 140.
x=20
Divide 40 by 2.
x=-\frac{240}{2}
Now solve the equation x=\frac{-100±140}{2} when ± is minus. Subtract 140 from -100.
x=-120
Divide -240 by 2.
x=20 x=-120
The equation is now solved.
x^{2}+100x-2400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+100x-2400-\left(-2400\right)=-\left(-2400\right)
Add 2400 to both sides of the equation.
x^{2}+100x=-\left(-2400\right)
Subtracting -2400 from itself leaves 0.
x^{2}+100x=2400
Subtract -2400 from 0.
x^{2}+100x+50^{2}=2400+50^{2}
Divide 100, the coefficient of the x term, by 2 to get 50. Then add the square of 50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+100x+2500=2400+2500
Square 50.
x^{2}+100x+2500=4900
Add 2400 to 2500.
\left(x+50\right)^{2}=4900
Factor x^{2}+100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+50\right)^{2}}=\sqrt{4900}
Take the square root of both sides of the equation.
x+50=70 x+50=-70
Simplify.
x=20 x=-120
Subtract 50 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}