Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{1}{2}x-0.75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-0.75\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{2} for b, and -0.75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-0.75\right)}}{2}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+3}}{2}
Multiply -4 times -0.75.
x=\frac{-\frac{1}{2}±\sqrt{\frac{13}{4}}}{2}
Add \frac{1}{4} to 3.
x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2}
Take the square root of \frac{13}{4}.
x=\frac{\sqrt{13}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{13}}{2}.
x=\frac{\sqrt{13}-1}{4}
Divide \frac{-1+\sqrt{13}}{2} by 2.
x=\frac{-\sqrt{13}-1}{2\times 2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{\sqrt{13}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{13}}{2} from -\frac{1}{2}.
x=\frac{-\sqrt{13}-1}{4}
Divide \frac{-1-\sqrt{13}}{2} by 2.
x=\frac{\sqrt{13}-1}{4} x=\frac{-\sqrt{13}-1}{4}
The equation is now solved.
x^{2}+\frac{1}{2}x-0.75=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{1}{2}x-0.75-\left(-0.75\right)=-\left(-0.75\right)
Add 0.75 to both sides of the equation.
x^{2}+\frac{1}{2}x=-\left(-0.75\right)
Subtracting -0.75 from itself leaves 0.
x^{2}+\frac{1}{2}x=0.75
Subtract -0.75 from 0.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=0.75+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=0.75+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{13}{16}
Add 0.75 to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{13}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{13}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{13}}{4} x+\frac{1}{4}=-\frac{\sqrt{13}}{4}
Simplify.
x=\frac{\sqrt{13}-1}{4} x=\frac{-\sqrt{13}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.