Solve for x
x=\frac{\sqrt{2359}}{100}-0.02\approx 0.465695378
x=-\frac{\sqrt{2359}}{100}-0.02\approx -0.505695378
Graph
Quiz
Quadratic Equation
5 problems similar to:
{ x }^{ 2 } +0.04x=0.045 \times ( \frac{ 1 }{ 3 } +4.9)
Share
Copied to clipboard
x^{2}+0.04x=0.045\times \frac{157}{30}
Add \frac{1}{3} and 4.9 to get \frac{157}{30}.
x^{2}+0.04x=\frac{471}{2000}
Multiply 0.045 and \frac{157}{30} to get \frac{471}{2000}.
x^{2}+0.04x-\frac{471}{2000}=0
Subtract \frac{471}{2000} from both sides.
x=\frac{-0.04±\sqrt{0.04^{2}-4\left(-\frac{471}{2000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.04 for b, and -\frac{471}{2000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.04±\sqrt{0.0016-4\left(-\frac{471}{2000}\right)}}{2}
Square 0.04 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.04±\sqrt{0.0016+\frac{471}{500}}}{2}
Multiply -4 times -\frac{471}{2000}.
x=\frac{-0.04±\sqrt{\frac{2359}{2500}}}{2}
Add 0.0016 to \frac{471}{500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.04±\frac{\sqrt{2359}}{50}}{2}
Take the square root of \frac{2359}{2500}.
x=\frac{\frac{\sqrt{2359}}{50}-\frac{1}{25}}{2}
Now solve the equation x=\frac{-0.04±\frac{\sqrt{2359}}{50}}{2} when ± is plus. Add -0.04 to \frac{\sqrt{2359}}{50}.
x=\frac{\sqrt{2359}}{100}-\frac{1}{50}
Divide -\frac{1}{25}+\frac{\sqrt{2359}}{50} by 2.
x=\frac{-\frac{\sqrt{2359}}{50}-\frac{1}{25}}{2}
Now solve the equation x=\frac{-0.04±\frac{\sqrt{2359}}{50}}{2} when ± is minus. Subtract \frac{\sqrt{2359}}{50} from -0.04.
x=-\frac{\sqrt{2359}}{100}-\frac{1}{50}
Divide -\frac{1}{25}-\frac{\sqrt{2359}}{50} by 2.
x=\frac{\sqrt{2359}}{100}-\frac{1}{50} x=-\frac{\sqrt{2359}}{100}-\frac{1}{50}
The equation is now solved.
x^{2}+0.04x=0.045\times \frac{157}{30}
Add \frac{1}{3} and 4.9 to get \frac{157}{30}.
x^{2}+0.04x=\frac{471}{2000}
Multiply 0.045 and \frac{157}{30} to get \frac{471}{2000}.
x^{2}+0.04x+0.02^{2}=\frac{471}{2000}+0.02^{2}
Divide 0.04, the coefficient of the x term, by 2 to get 0.02. Then add the square of 0.02 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.04x+0.0004=\frac{471}{2000}+0.0004
Square 0.02 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.04x+0.0004=\frac{2359}{10000}
Add \frac{471}{2000} to 0.0004 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.02\right)^{2}=\frac{2359}{10000}
Factor x^{2}+0.04x+0.0004. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.02\right)^{2}}=\sqrt{\frac{2359}{10000}}
Take the square root of both sides of the equation.
x+0.02=\frac{\sqrt{2359}}{100} x+0.02=-\frac{\sqrt{2359}}{100}
Simplify.
x=\frac{\sqrt{2359}}{100}-\frac{1}{50} x=-\frac{\sqrt{2359}}{100}-\frac{1}{50}
Subtract 0.02 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}