Solve for x
x=\frac{\sqrt{10101428561}-100169}{200000}\approx 0.001684317
x=\frac{-\sqrt{10101428561}-100169}{200000}\approx -1.003374317
Graph
Share
Copied to clipboard
x^{2}+\left(1+1.69\times \frac{1}{1000}\right)x-1.69\times 10^{-3}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\left(1+\frac{169}{100000}\right)x-1.69\times 10^{-3}=0
Multiply 1.69 and \frac{1}{1000} to get \frac{169}{100000}.
x^{2}+\frac{100169}{100000}x-1.69\times 10^{-3}=0
Add 1 and \frac{169}{100000} to get \frac{100169}{100000}.
x^{2}+\frac{100169}{100000}x-1.69\times \frac{1}{1000}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\frac{100169}{100000}x-\frac{169}{100000}=0
Multiply 1.69 and \frac{1}{1000} to get \frac{169}{100000}.
x=\frac{-\frac{100169}{100000}±\sqrt{\left(\frac{100169}{100000}\right)^{2}-4\left(-\frac{169}{100000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{100169}{100000} for b, and -\frac{169}{100000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{100169}{100000}±\sqrt{\frac{10033828561}{10000000000}-4\left(-\frac{169}{100000}\right)}}{2}
Square \frac{100169}{100000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{100169}{100000}±\sqrt{\frac{10033828561}{10000000000}+\frac{169}{25000}}}{2}
Multiply -4 times -\frac{169}{100000}.
x=\frac{-\frac{100169}{100000}±\sqrt{\frac{10101428561}{10000000000}}}{2}
Add \frac{10033828561}{10000000000} to \frac{169}{25000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{100169}{100000}±\frac{\sqrt{10101428561}}{100000}}{2}
Take the square root of \frac{10101428561}{10000000000}.
x=\frac{\sqrt{10101428561}-100169}{2\times 100000}
Now solve the equation x=\frac{-\frac{100169}{100000}±\frac{\sqrt{10101428561}}{100000}}{2} when ± is plus. Add -\frac{100169}{100000} to \frac{\sqrt{10101428561}}{100000}.
x=\frac{\sqrt{10101428561}-100169}{200000}
Divide \frac{-100169+\sqrt{10101428561}}{100000} by 2.
x=\frac{-\sqrt{10101428561}-100169}{2\times 100000}
Now solve the equation x=\frac{-\frac{100169}{100000}±\frac{\sqrt{10101428561}}{100000}}{2} when ± is minus. Subtract \frac{\sqrt{10101428561}}{100000} from -\frac{100169}{100000}.
x=\frac{-\sqrt{10101428561}-100169}{200000}
Divide \frac{-100169-\sqrt{10101428561}}{100000} by 2.
x=\frac{\sqrt{10101428561}-100169}{200000} x=\frac{-\sqrt{10101428561}-100169}{200000}
The equation is now solved.
x^{2}+\left(1+1.69\times \frac{1}{1000}\right)x-1.69\times 10^{-3}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\left(1+\frac{169}{100000}\right)x-1.69\times 10^{-3}=0
Multiply 1.69 and \frac{1}{1000} to get \frac{169}{100000}.
x^{2}+\frac{100169}{100000}x-1.69\times 10^{-3}=0
Add 1 and \frac{169}{100000} to get \frac{100169}{100000}.
x^{2}+\frac{100169}{100000}x-1.69\times \frac{1}{1000}=0
Calculate 10 to the power of -3 and get \frac{1}{1000}.
x^{2}+\frac{100169}{100000}x-\frac{169}{100000}=0
Multiply 1.69 and \frac{1}{1000} to get \frac{169}{100000}.
x^{2}+\frac{100169}{100000}x=\frac{169}{100000}
Add \frac{169}{100000} to both sides. Anything plus zero gives itself.
x^{2}+\frac{100169}{100000}x+\left(\frac{100169}{200000}\right)^{2}=\frac{169}{100000}+\left(\frac{100169}{200000}\right)^{2}
Divide \frac{100169}{100000}, the coefficient of the x term, by 2 to get \frac{100169}{200000}. Then add the square of \frac{100169}{200000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{100169}{100000}x+\frac{10033828561}{40000000000}=\frac{169}{100000}+\frac{10033828561}{40000000000}
Square \frac{100169}{200000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{100169}{100000}x+\frac{10033828561}{40000000000}=\frac{10101428561}{40000000000}
Add \frac{169}{100000} to \frac{10033828561}{40000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{100169}{200000}\right)^{2}=\frac{10101428561}{40000000000}
Factor x^{2}+\frac{100169}{100000}x+\frac{10033828561}{40000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{100169}{200000}\right)^{2}}=\sqrt{\frac{10101428561}{40000000000}}
Take the square root of both sides of the equation.
x+\frac{100169}{200000}=\frac{\sqrt{10101428561}}{200000} x+\frac{100169}{200000}=-\frac{\sqrt{10101428561}}{200000}
Simplify.
x=\frac{\sqrt{10101428561}-100169}{200000} x=\frac{-\sqrt{10101428561}-100169}{200000}
Subtract \frac{100169}{200000} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}